Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Glob Chang Biol ; 30(1): e17009, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37942571

RESUMO

The high Arctic is considered a pristine environment compared with many other regions in the northern hemisphere. It is becoming increasingly vulnerable to invasion by invasive alien species (IAS), however, as climate change leads to rapid loss of sea ice, changes in ocean temperature and salinity, and enhanced human activities. These changes are likely to increase the incidence of arrival and the potential for establishment of IAS in the region. To predict the impact of IAS, a group of experts in taxonomy, invasion biology and Arctic ecology carried out a horizon scanning exercise using the Svalbard archipelago as a case study, to identify the species that present the highest risk to biodiversity, human health and the economy within the next 10 years. A total of 114 species, currently absent from Svalbard, recorded once and/or identified only from environmental DNA samples, were initially identified as relevant for review. Seven species were found to present a high invasion risk and to potentially cause a significant negative impact on biodiversity and five species had the potential to have an economic impact on Svalbard. Decapod crabs, ascidians and barnacles dominated the list of highest risk marine IAS. Potential pathways of invasion were also researched, the most common were found associated with vessel traffic. We recommend (i) use of this approach as a key tool within the application of biosecurity measures in the wider high Arctic, (ii) the addition of this tool to early warning systems for strengthening existing surveillance measures; and (iii) that this approach is used to identify high-risk terrestrial and freshwater IAS to understand the overall threat facing the high Arctic. Without the application of biosecurity measures, including horizon scanning, there is a greater risk that marine IAS invasions will increase, leading to unforeseen changes in the environment and economy of the high Arctic.


Assuntos
Biodiversidade , Espécies Introduzidas , Humanos , Svalbard , Ecologia , Regiões Árticas , Ecossistema
2.
Biofouling ; 38(7): 729-745, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36100232

RESUMO

Biofouling on marine renewable energy devices presents engineering challenges for this developing sector, and has implications for the spread of marine non-native species (NNS) in coastal waters. This is particularly true at sites with abundant energy resource, little existing infrastructure, and few established NNS. Device coatings, such as antifouling paints, could reduce the risk of NNS spread. Settlement on coatings of various types and colours, representing those likely to be used on renewable energy devices, was assessed in the Orkney Islands, northern Scotland. Assemblage composition, but not overall biofouling cover, varied initially among different coloured surfaces, although differences decreased over time. Different coating types (an anticorrosive paint, a biocidal paint and a fouling-release coating) differed in biofouling abundance and composition for the full duration of the experiment. NNS were mostly, but not completely, absent from antifouling surfaces. These results can help informing antifouling strategies for the marine renewable energy industry.


Assuntos
Incrustação Biológica , Biofilmes , Incrustação Biológica/prevenção & controle , Cor , Espécies Introduzidas , Pintura , Energia Renovável
3.
Glob Chang Biol ; 26(4): 2702-2716, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31930639

RESUMO

The Antarctic is considered to be a pristine environment relative to other regions of the Earth, but it is increasingly vulnerable to invasions by marine, freshwater and terrestrial non-native species. The Antarctic Peninsula region (APR), which encompasses the Antarctic Peninsula, South Shetland Islands and South Orkney Islands, is by far the most invaded part of the Antarctica continent. The risk of introduction of invasive non-native species to the APR is likely to increase with predicted increases in the intensity, diversity and distribution of human activities. Parties that are signatories to the Antarctic Treaty have called for regional assessments of non-native species risk. In response, taxonomic and Antarctic experts undertook a horizon scanning exercise using expert opinion and consensus approaches to identify the species that are likely to present the highest risk to biodiversity and ecosystems within the APR over the next 10 years. One hundred and three species, currently absent in the APR, were identified as relevant for review, with 13 species identified as presenting a high risk of invading the APR. Marine invertebrates dominated the list of highest risk species, with flowering plants and terrestrial invertebrates also represented; however, vertebrate species were thought unlikely to establish in the APR within the 10 year timeframe. We recommend (a) the further development and application of biosecurity measures by all stakeholders active in the APR, including surveillance for species such as those identified during this horizon scanning exercise, and (b) use of this methodology across the other regions of Antarctica. Without the application of appropriate biosecurity measures, rates of introductions and invasions within the APR are likely to increase, resulting in negative consequences for the biodiversity of the whole continent, as introduced species establish and spread further due to climate change and increasing human activity.

4.
Glob Chang Biol ; 25(3): 1032-1048, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30548757

RESUMO

The European Union (EU) has recently published its first list of invasive alien species (IAS) of EU concern to which current legislation must apply. The list comprises species known to pose great threats to biodiversity and needs to be maintained and updated. Horizon scanning is seen as critical to identify the most threatening potential IAS that do not yet occur in Europe to be subsequently risk assessed for future listing. Accordingly, we present a systematic consensus horizon scanning procedure to derive a ranked list of potential IAS likely to arrive, establish, spread and have an impact on biodiversity in the region over the next decade. The approach is unique in the continental scale examined, the breadth of taxonomic groups and environments considered, and the methods and data sources used. International experts were brought together to address five broad thematic groups of potential IAS. For each thematic group the experts first independently assembled lists of potential IAS not yet established in the EU but potentially threatening biodiversity if introduced. Experts were asked to score the species within their thematic group for their separate likelihoods of i) arrival, ii) establishment, iii) spread, and iv) magnitude of the potential negative impact on biodiversity within the EU. Experts then convened for a 2-day workshop applying consensus methods to compile a ranked list of potential IAS. From an initial working list of 329 species, a list of 66 species not yet established in the EU that were considered to be very high (8 species), high (40 species) or medium (18 species) risk species was derived. Here, we present these species highlighting the potential negative impacts and the most likely biogeographic regions to be affected by these potential IAS.


Assuntos
Biodiversidade , Ecossistema , Espécies Introduzidas/tendências , Animais , Conferências de Consenso como Assunto , Política Ambiental , União Europeia , Espécies Introduzidas/estatística & dados numéricos , Medição de Risco
5.
PLoS Biol ; 13(4): e1002130, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25875845

RESUMO

Assessment of the ecological and economic/societal impacts of the introduction of non-indigenous species (NIS) is one of the primary focus areas of bioinvasion science in terrestrial and aquatic environments, and is considered essential to management. A classification system of NIS, based on the magnitude of their environmental impacts, was recently proposed to assist management. Here, we consider the potential application of this classification scheme to the marine environment, and offer a complementary framework focussing on value sets in order to explicitly address marine management concerns. Since existing data on marine NIS impacts are scarce and successful marine removals are rare, we propose that management of marine NIS adopt a precautionary approach, which not only would emphasise preventing new incursions through pre-border and at-border controls but also should influence the categorisation of impacts. The study of marine invasion impacts requires urgent attention and significant investment, since we lack the luxury of waiting for the knowledge base to be acquired before the window of opportunity closes for feasible management.


Assuntos
Meio Ambiente , Espécies Introduzidas , Biologia Marinha , Animais
6.
Biofouling ; 32(3): 261-76, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26900732

RESUMO

Knowledge of biofouling typical of marine structures is essential for engineers to define appropriate loading criteria in addition to informing other stakeholders about the ecological implications of creating novel artificial environments. There is a lack of information regarding biofouling community composition (including weight and density characteristics) on floating structures associated with future marine renewable energy generation technologies. A network of navigation buoys were identified across a range of geographical areas, environmental conditions (tidal flow speed, temperature and salinity), and deployment durations suitable for future developments. Despite the perceived importance of environmental and temporal factors, geographical location explained the greatest proportion of the observed variation in community composition, emphasising the importance of considering geography when assessing the impact of biofouling on device functioning and associated ecology. The principal taxa associated with variation in biofouling community composition were mussels (Mytilus edulis), which were also important when determining loading criteria.


Assuntos
Organismos Aquáticos/fisiologia , Incrustação Biológica/prevenção & controle , Fontes de Energia Elétrica/microbiologia , Mytilus edulis/fisiologia , Energia Renovável , Animais , Fenômenos Ecológicos e Ambientais , Ecossistema , Biologia Marinha/métodos
7.
Mol Ecol ; 17(5): 1293-303, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18302689

RESUMO

Caprella mutica (Crustacea, Amphipoda) has been widely introduced to non-native regions in the last 40 years. Its native habitat is sub-boreal northeast Asia, but in the Northern Hemisphere, it is now found on both coasts of North America, and North Atlantic coastlines of Europe. Direct sequencing of mitochondrial DNA (cytochrome c oxidase subunit I gene) was used to compare genetic variation in native and non-native populations of C. mutica. These data were used to investigate the invasion history of C. mutica and to test potential source populations in Japan. High diversity (31 haplotypes from 49 individuals), but no phylogeographical structure, was identified in four populations in the putative native range. In contrast, non-native populations showed reduced genetic diversity (7 haplotypes from 249 individuals) and informative phylogeographical structure. Grouping of C. mutica populations into native, east Pacific, and Atlantic groups explained the most among-region variation (59%). This indicates independent introduction pathways for C. mutica to the Pacific and Atlantic coasts of North America. Two dominant haplotypes were identified in eastern and western Atlantic coastal populations, indicating several dispersal routes within the Atlantic. The analysis indicated that several introductions from multiple sources were likely to be responsible for the observed global distribution of C. mutica, but the pathways were least well defined among the Atlantic populations. The four sampled populations of C. mutica in Japan could not be identified as the direct source of the non-native populations examined in this study. The high diversity within the Japan populations indicates that the native range needs to be assessed at a far greater scale, both within and among populations, to accurately assess the source of the global spread of C. mutica.


Assuntos
Anfípodes/genética , Anfípodes/fisiologia , DNA Mitocondrial/genética , Ecossistema , Geografia , Anfípodes/enzimologia , Animais , Sequência de Bases , Complexo IV da Cadeia de Transporte de Elétrons/genética , Europa (Continente) , Variação Genética , Haplótipos , Japão , América do Norte , Oceanos e Mares , Filogenia , Dinâmica Populacional
8.
Mar Environ Res ; 64(3): 305-12, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17383720

RESUMO

Physiological tolerances limit the distribution of marine species, with geographical ranges being set by environmental factors, such as temperature and salinity, which affect the rates of vital processes and survival of marine ectotherms. The physiological tolerances of the non-native marine amphipod Caprella mutica were investigated in laboratory experiments. Adult C. mutica were collected from a fish farm on the west coast of Scotland and exposed to a range of temperatures and salinities for 48 h. C. mutica were tolerant of a broad range of temperature and salinity conditions, with 100% mortality at 30 degrees C (48 h LT50, 28.3+/-0.4 degrees C), and salinities lower than 16 (48 h LC50, 18.7+/-0.2). Although lethargic at low temperatures (2 degrees C), no mortality was observed, and the species is known to survive at temperatures as low as -1.8 degrees C. The upper LC(50) was greater than the highest salinity tested (40), thus it is unlikely that salinity will limit the distribution of C. mutica in open coastal waters. However, the species will be excluded from brackish water environments such as the heads of sea lochs or estuaries. The physiological tolerances of C. mutica are beyond the physical conditions experienced in its native or introduced range and are thus unlikely to be the primary factors limiting its present distribution and future spread.


Assuntos
Adaptação Fisiológica/fisiologia , Anfípodes/fisiologia , Animais , Meio Ambiente , Densidade Demográfica , Água do Mar , Temperatura
10.
Mar Biol ; 163: 173, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27512234

RESUMO

Marine invasive non-native species (NNS) are one of the greatest threats to global marine biodiversity, causing significant economic and social impacts. Marinas are increasingly recognised as key reservoirs for invasive NNS. They provide submersed artificial habitat that unintentionally supports the establishment of NNS introduced from visiting recreational vessels. While ballast water and shipping vectors have been well documented, the role of recreational vessels in spreading NNS has been relatively poorly studied. Identification of the main physical features found within marinas, which relate to the presence of NNS, is important to inform the development of effective biosecurity measures and prevent further spread. Towards this aim, physical features that could influence the presence of NNS were assessed for marinas throughout the UK in July 2013. Thirty-three marine and brackish NNS have been recorded in UK marinas, and of the 88 marinas studied in detail, 83 contained between 1 and 13 NNS. Significant differences in freshwater input, marina entrance width and seawall length were associated with the presence of NNS. Additionally, questionnaires were distributed to marina managers and recreational vessel owners to understand current biosecurity practices and attitudes to recreational vessel biosecurity. The main barriers to biosecurity compliance were cited as cost and time. Further work identifying easily distinguished features of marinas could be used as a proxy to assess risk of invasion.

11.
PLoS One ; 7(8): e41243, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22870211

RESUMO

The trophic interactions of sea urchins are known to be the agents of phase shifts in benthic marine habitats such as tropical and temperate reefs. In temperate reefs, the grazing activity of sea urchins has been responsible for the destruction of kelp forests and the formation of 'urchin barrens', a rocky habitat dominated by crustose algae and encrusting invertebrates. Once formed, these urchin barrens can persist for decades. Trophic plasticity in the sea urchin may contribute to the stability and resilience of this alternate stable state by increasing diet breadth in sea urchins. This plasticity promotes ecological connectivity and weakens species interactions and so increases ecosystem stability. We test the hypothesis that sea urchins exhibit trophic plasticity using an approach that controls for other typically confounding environmental and genetic factors. To do this, we exposed a genetically homogenous population of sea urchins to two very different trophic environments over a period of two years. The sea urchins exhibited a wide degree of phenotypic trophic plasticity when exposed to contrasting trophic environments. The two populations developed differences in their gross morphology and the test microstructure. In addition, when challenged with unfamiliar prey, the response of each group was different. We show that sea urchins exhibit significant morphological and behavioural phenotypic plasticity independent of their environment or their nutritional status.


Assuntos
Adaptação Fisiológica , Comportamento Alimentar/fisiologia , Cadeia Alimentar , Ouriços-do-Mar/fisiologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA