RESUMO
We have produced gene expression profiles of all 302 neurons of the C. elegans nervous system that match the single-cell resolution of its anatomy and wiring diagram. Our results suggest that individual neuron classes can be solely identified by combinatorial expression of specific gene families. For example, each neuron class expresses distinct codes of â¼23 neuropeptide genes and â¼36 neuropeptide receptors, delineating a complex and expansive "wireless" signaling network. To demonstrate the utility of this comprehensive gene expression catalog, we used computational approaches to (1) identify cis-regulatory elements for neuron-specific gene expression and (2) reveal adhesion proteins with potential roles in process placement and synaptic specificity. Our expression data are available at https://cengen.org and can be interrogated at the web application CengenApp. We expect that this neuron-specific directory of gene expression will spur investigations of underlying mechanisms that define anatomy, connectivity, and function throughout the C. elegans nervous system.
Assuntos
Caenorhabditis elegans/metabolismo , Sistema Nervoso/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Corantes Fluorescentes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Larva/metabolismo , Neurônios/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Motivos de Nucleotídeos/genética , RNA-Seq , Sequências Reguladoras de Ácido Nucleico/genética , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Transcrição GênicaRESUMO
Animal nervous system organization is crucial for all body functions and its disruption can lead to severe cognitive and behavioural impairment1. This organization relies on features across scales-from the localization of synapses at the nanoscale, through neurons, which possess intricate neuronal morphologies that underpin circuit organization, to stereotyped connections between different regions of the brain2. The sheer complexity of this organ means that the feat of reconstructing and modelling the structure of a complete nervous system that is integrated across all of these scales has yet to be achieved. Here we present a complete structure-function model of the main neuropil in the nematode Caenorhabditis elegans-the nerve ring-which we derive by integrating the volumetric reconstructions from two animals with corresponding3 synaptic and gap-junctional connectomes. Whereas previously the nerve ring was considered to be a densely packed tract of neural processes, we uncover internal organization and show how local neighbourhoods spatially constrain and support the synaptic connectome. We find that the C. elegans connectome is not invariant, but that a precisely wired core circuit is embedded in a background of variable connectivity, and identify a candidate reference connectome for the core circuit. Using this reference, we propose a modular network architecture of the C. elegans brain that supports sensory computation and integration, sensorimotor convergence and brain-wide coordination. These findings reveal scalable and robust features of brain organization that may be universal across phyla.
Assuntos
Encéfalo/citologia , Encéfalo/fisiologia , Caenorhabditis elegans/citologia , Caenorhabditis elegans/fisiologia , Conectoma , Animais , Encéfalo/anatomia & histologia , Caenorhabditis elegans/anatomia & histologia , Junções Comunicantes , Modelos Biológicos , Vias Neurais , Neuritos , Neurópilo/citologia , Neurópilo/fisiologia , Sinapses/metabolismoRESUMO
Knowledge of connectivity in the nervous system is essential to understanding its function. Here we describe connectomes for both adult sexes of the nematode Caenorhabditis elegans, an important model organism for neuroscience research. We present quantitative connectivity matrices that encompass all connections from sensory input to end-organ output across the entire animal, information that is necessary to model behaviour. Serial electron microscopy reconstructions that are based on the analysis of both new and previously published electron micrographs update previous results and include data on the male head. The nervous system differs between sexes at multiple levels. Several sex-shared neurons that function in circuits for sexual behaviour are sexually dimorphic in structure and connectivity. Inputs from sex-specific circuitry to central circuitry reveal points at which sexual and non-sexual pathways converge. In sex-shared central pathways, a substantial number of connections differ in strength between the sexes. Quantitative connectomes that include all connections serve as the basis for understanding how complex, adaptive behavior is generated.
Assuntos
Caenorhabditis elegans/metabolismo , Conectoma , Sistema Nervoso/anatomia & histologia , Sistema Nervoso/metabolismo , Caracteres Sexuais , Animais , Comportamento Animal , Caenorhabditis elegans/citologia , Feminino , Cabeça/anatomia & histologia , Cabeça/inervação , Organismos Hermafroditas , Masculino , Microscopia Eletrônica , Atividade Motora , Movimento , Sistema Nervoso/citologia , Vias NeuraisRESUMO
Homeobox genes are prominent regulators of neuronal identity, but the extent to which their function has been probed in animal nervous systems remains limited. In the nematode Caenorhabditis elegans, each individual neuron class is defined by the expression of unique combinations of homeobox genes, prompting the question of whether each neuron class indeed requires a homeobox gene for its proper identity specification. We present here progress in addressing this question by extending previous mutant analysis of homeobox gene family members and describing multiple examples of homeobox gene function in different parts of the C. elegans nervous system. To probe homeobox function, we make use of a number of reporter gene tools, including a novel multicolor reporter transgene, NeuroPAL, which permits simultaneous monitoring of the execution of multiple differentiation programs throughout the entire nervous system. Using these tools, we add to the previous characterization of homeobox gene function by identifying neuronal differentiation defects for 14 homeobox genes in 24 distinct neuron classes that are mostly unrelated by location, function and lineage history. 12 of these 24 neuron classes had no homeobox gene function ascribed to them before, while in the other 12 neuron classes, we extend the combinatorial code of transcription factors required for specifying terminal differentiation programs. Furthermore, we demonstrate that in a particular lineage, homeotic identity transformations occur upon loss of a homeobox gene and we show that these transformations are the result of changes in homeobox codes. Combining the present with past analyses, 113 of the 118 neuron classes of C. elegans are now known to require a homeobox gene for proper execution of terminal differentiation programs. Such broad deployment indicates that homeobox function in neuronal identity specification may be an ancestral feature of animal nervous systems.
Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Emprego , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox/genética , Neurônios/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Sex differences in behaviour extend to cognitive-like processes such as learning, but the underlying dimorphisms in neural circuit development and organization that generate these behavioural differences are largely unknown. Here we define at the single-cell level-from development, through neural circuit connectivity, to function-the neural basis of a sex-specific learning in the nematode Caenorhabditis elegans. We show that sexual conditioning, a form of associative learning, requires a pair of male-specific interneurons whose progenitors are fully differentiated glia. These neurons are generated during sexual maturation and incorporated into pre-exisiting sex-shared circuits to couple chemotactic responses to reproductive priorities. Our findings reveal a general role for glia as neural progenitors across metazoan taxa and demonstrate that the addition of sex-specific neuron types to brain circuits during sexual maturation is an important mechanism for the generation of sexually dimorphic plasticity in learning.
Assuntos
Caenorhabditis elegans/citologia , Caenorhabditis elegans/fisiologia , Interneurônios/citologia , Interneurônios/fisiologia , Aprendizagem/fisiologia , Neuroglia/citologia , Caracteres Sexuais , Animais , Encéfalo/citologia , Divisão Celular , Separação Celular , Transdiferenciação Celular , Quimiotaxia , Condicionamento Clássico/fisiologia , Interneurônios/classificação , Masculino , Vias Neurais , Células-Tronco Neurais/citologia , Neurogênese , Plasticidade Neuronal , Reprodução/fisiologia , Comportamento Sexual Animal/fisiologia , Maturidade Sexual , Análise de Célula ÚnicaRESUMO
Spinal muscular atrophy (SMA) is caused by depletion of the ubiquitously expressed survival motor neuron (SMN) protein, with 1 in 40 Caucasians being heterozygous for a disease allele. SMN is critical for the assembly of numerous ribonucleoprotein complexes, yet it is still unclear how reduced SMN levels affect motor neuron function. Here, we examined the impact of SMN depletion in Caenorhabditis elegans and found that decreased function of the SMN ortholog SMN-1 perturbed endocytic pathways at motor neuron synapses and in other tissues. Diminished SMN-1 levels caused defects in C. elegans neuromuscular function, and smn-1 genetic interactions were consistent with an endocytic defect. Changes were observed in synaptic endocytic proteins when SMN-1 levels decreased. At the ultrastructural level, defects were observed in endosomal compartments, including significantly fewer docked synaptic vesicles. Finally, endocytosis-dependent infection by JC polyomavirus (JCPyV) was reduced in human cells with decreased SMN levels. Collectively, these results demonstrate for the first time, to our knowledge, that SMN depletion causes defects in endosomal trafficking that impair synaptic function, even in the absence of motor neuron cell death.
Assuntos
Proteínas de Caenorhabditis elegans/genética , Endocitose/genética , Transdução de Sinais/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Humanos , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Interferência de RNA , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Sinapses/genética , Sinapses/metabolismoRESUMO
Animals with small nervous systems have a limited number of sensory neurons that must encode information from a changing environment. This problem is particularly exacerbated in nematodes that populate a wide variety of distinct ecological niches but only have a few sensory neurons available to encode multiple modalities. How does sensory diversity prevail within this neuronal constraint? To identify the genetic basis for patterning different nervous systems, we demonstrate that sensory neurons in the Pristionchus pacificus respond to various salt sensory cues in a manner that is partially distinct from that of the distantly related nematode C. elegans. By visualizing neuronal activity patterns, we show that contrary to previous expectations based on its genome sequence, the salt responses of P. pacificus are encoded in a left/right asymmetric manner in the bilateral ASE neuron pair. Our study illustrates patterns of evolutionary stability and change in the gustatory system of nematodes.
RESUMO
Axons must project to particular brain regions, contact adjacent neurons, and choose appropriate synaptic targets to form a nervous system. Multiple mechanisms have been proposed to explain synaptic partnership choice. In a "lock-and-key" mechanism, first proposed by Sperry's chemoaffinity model,1 a neuron selectively chooses a synaptic partner among several different, adjacent target cells, based on a specific molecular recognition code.2 Alternatively, Peters' rule posits that neurons indiscriminately form connections with other neuron types in their proximity; hence, neighborhood choice, determined by initial neuronal process outgrowth and position, is the main predictor of connectivity.3,4 However, whether Peters' rule plays an important role in synaptic wiring remains unresolved.5 To assess the nanoscale relationship between neuronal adjacency and connectivity, we evaluate the expansive set of C. elegans connectomes. We find that synaptic specificity can be accurately modeled as a process mediated by a neurite adjacency threshold and brain strata, offering strong support for Peters' rule as an organizational principle of C. elegans brain wiring.
Assuntos
Caenorhabditis elegans , Sinapses , Animais , Caenorhabditis elegans/fisiologia , Sinapses/fisiologia , Neurônios/fisiologia , Neuritos/fisiologia , EncéfaloRESUMO
Studies of neuronal connectivity in model organisms, i.e., of their connectomes, have been instrumental in dissecting the structure-function relationship of nervous systems. However, the limited sample size of these studies has impeded analyses into how variation of connectivity across populations may influence circuit architecture and behavior. Moreover, little is known about how experiences induce changes in circuit architecture. Here, we show that an asymmetric salt-sensing circuit in the nematode Caenorhabditis elegans exhibits variation that predicts the animals' salt preferences and undergoes restructuring during salt associative learning. Naive worms memorize and prefer the salt concentration they experience in the presence of food through a left-biased neural network architecture. However, animals conditioned at elevated salt concentrations change this left-biased network to a right-biased network. This change in circuit architecture occurs through the addition of new synapses in response to asymmetric, paracrine insulin signaling. Therefore, experience-dependent changes in an animal's neural connectome are induced by insulin signaling and are fundamental to learning and behavior.
Assuntos
Proteínas de Caenorhabditis elegans , Animais , Proteínas de Caenorhabditis elegans/fisiologia , Insulina , Quimiotaxia/fisiologia , Caenorhabditis elegans/fisiologia , Sinapses , Cloreto de SódioRESUMO
Asymmetric brain function is common across the animal kingdom and involved in language processing, and likely in learning and memory. What regulates asymmetric brain function remains elusive. Here, we show that the nematode Caenorhabditis elegans restructures an asymmetric salt sensing neural circuit during associative learning. Worms memorize and prefer the salt concentration at which they were raised in the presence of food through a left-biased network architecture. When conditioned at elevated salt concentrations, animals change the left-biased to a right-biased network, which explains the changed salt-seeking behavior. The changes in circuit architecture require new synapse formation induced through asymmetric, paracrine insulin-signaling. Therefore, experience-dependent changes in asymmetric network architecture rely on paracrine insulin signaling and are fundamental to learning and behavior.
RESUMO
Single neuron-specific drivers are important tools for visualizing neuron anatomy, manipulating neuron activity and gene rescue experiments. We report here that genomic regions upstream of the C. elegans bHLH-PAS gene hlh-34 can be used to drive gene expression exclusively in the AVH interneuron pair and not, as previously reported, the AVJ interneuron pair.
RESUMO
Many neuronal identity regulators are expressed in distinct populations of cells in the nervous system, but their function is often analyzed only in specific isolated cellular contexts, thereby potentially leaving overarching themes in gene function undiscovered. We show here that the Caenorhabditis elegans Prop1-like homeobox gene unc-42 is expressed in 15 distinct sensory, inter- and motor neuron classes throughout the entire C. elegans nervous system. Strikingly, all 15 neuron classes expressing unc-42 are synaptically interconnected, prompting us to investigate whether unc-42 controls the functional properties of this circuit and perhaps also the assembly of these neurons into functional circuitry. We found that unc-42 defines the routes of communication between these interconnected neurons by controlling the expression of neurotransmitter pathway genes, neurotransmitter receptors, neuropeptides, and neuropeptide receptors. Anatomical analysis of unc-42 mutant animals reveals defects in axon pathfinding and synaptic connectivity, paralleled by expression defects of molecules involved in axon pathfinding, cell-cell recognition, and synaptic connectivity. We conclude that unc-42 establishes functional circuitry by acting as a terminal selector of functionally connected neuron types. We identify a number of additional transcription factors that are also expressed in synaptically connected neurons and propose that terminal selectors may also function as 'circuit organizer transcription factors' to control the assembly of functional circuitry throughout the nervous system. We hypothesize that such organizational properties of transcription factors may be reflective of not only ontogenetic, but perhaps also phylogenetic trajectories of neuronal circuit establishment.
Assuntos
Padronização Corporal/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/embriologia , Proteínas de Homeodomínio/genética , Interneurônios/fisiologia , Neurônios Motores/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Embrião não Mamífero/embriologia , Proteínas de Homeodomínio/metabolismo , Sinapses/metabolismoRESUMO
Detailed anatomical maps of individual organs and entire animals have served as invaluable entry points for ensuing dissection of their evolution, development, and function. The pharynx of the nematode Caenorhabditis elegans is a simple neuromuscular organ with a self-contained, autonomously acting nervous system, composed of 20 neurons that fall into 14 anatomically distinct types. Using serial electron micrograph (EM) reconstruction, we re-evaluate here the connectome of the pharyngeal nervous system, providing a novel and more detailed view of its structure and predicted function. Contrasting the previous classification of pharyngeal neurons into distinct inter- and motor neuron classes, we provide evidence that most pharyngeal neurons are also likely sensory neurons and most, if not all, pharyngeal neurons also classify as motor neurons. Together with the extensive cross-connectivity among pharyngeal neurons, which is more widespread than previously realized, the sensory-motor characteristics of most neurons define a shallow network architecture of the pharyngeal connectome. Network analysis reveals that the patterns of neuronal connections are organized into putative computational modules that reflect the known functional domains of the pharynx. Compared with the somatic nervous system, pharyngeal neurons both physically associate with a larger fraction of their neighbors and create synapses with a greater proportion of their neighbors. We speculate that the overall architecture of the pharyngeal nervous system may be reminiscent of the architecture of ancestral, primitive nervous systems.
Assuntos
Caenorhabditis elegans/anatomia & histologia , Caenorhabditis elegans/fisiologia , Conectoma , Faringe/inervação , Faringe/fisiologia , Animais , Comportamento Alimentar/fisiologia , Neurônios Motores/fisiologia , Neurônios Motores/ultraestrutura , Células Receptoras Sensoriais/fisiologia , Células Receptoras Sensoriais/ultraestrutura , Sinapses/fisiologia , Sinapses/ultraestruturaRESUMO
Sexually dimorphic behaviours require underlying differences in the nervous system between males and females. The extent to which nervous systems are sexually dimorphic and the cellular and molecular mechanisms that regulate these differences are only beginning to be understood. We reveal here a novel mechanism by which male-specific neurons are generated in Caenorhabditis elegans through the direct transdifferentiation of sex-shared glial cells. This glia-to-neuron cell fate switch occurs during male sexual maturation under the cell-autonomous control of the sex-determination pathway. We show that the neurons generated are cholinergic, peptidergic, and ciliated putative proprioceptors which integrate into male-specific circuits for copulation. These neurons ensure coordinated backward movement along the mate's body during mating. One step of the mating sequence regulated by these neurons is an alternative readjustment movement performed when intromission becomes difficult to achieve. Our findings reveal programmed transdifferentiation as a developmental mechanism underlying flexibility in innate behaviour.
Assuntos
Transdiferenciação Celular , Neuroglia/citologia , Neurônios/citologia , Comportamento Sexual Animal , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Cálcio/química , Comunicação Celular , Linhagem da Célula , Copulação , Feminino , Masculino , Interferência de RNA , Reprodução , Células Receptoras Sensoriais/citologia , Caracteres SexuaisRESUMO
The nematodes C. elegans and P. pacificus populate diverse habitats and display distinct patterns of behavior. To understand how their nervous systems have diverged, we undertook a detailed examination of the neuroanatomy of the chemosensory system of P. pacificus. Using independent features such as cell body position, axon projections and lipophilic dye uptake, we have assigned homologies between the amphid neurons, their first-layer interneurons, and several internal receptor neurons of P. pacificus and C. elegans. We found that neuronal number and soma position are highly conserved. However, the morphological elaborations of several amphid cilia are different between them, most notably in the absence of 'winged' cilia morphology in P. pacificus. We established a synaptic wiring diagram of amphid sensory neurons and amphid interneurons in P. pacificus and found striking patterns of conservation and divergence in connectivity relative to C. elegans, but very little changes in relative neighborhood of neuronal processes. These findings demonstrate the existence of several constraints in patterning the nervous system and suggest that major substrates for evolutionary novelty lie in the alterations of dendritic structures and synaptic connectivity.
Assuntos
Interneurônios/citologia , Rede Nervosa/anatomia & histologia , Sistema Nervoso/anatomia & histologia , Rabditídios/anatomia & histologia , Células Receptoras Sensoriais/citologia , AnimaisRESUMO
Many publicly owned treatment works in North America are exceeding permitted limits for total cyanide in their wastewater treatment effluents. A recently introduced rapid, segmented, flow-injection analysis procedure using UV digestion and amperometric detection of the membrane-separated cyanide was used to investigate the various scenarios by which elevated cyanide levels might be present in wastewater treatment plant effluent. A number of significant interferences can produce false positive bias during sample analysis with the traditional acid distillation technique, but are minimized or absent with the new analytical method. However, increased levels of cyanide were found in some chlorinated wastewaters compared to the levels before chlorination, suggesting a fast reaction mechanism associated with the disinfectant and some precursor in the wastewater. In particular, the contact of chlorine with nitrite in the presence of a carbon precursor appears to contribute to cyanide formation during wastewater treatment and sample handling. This paper explores the scenarios under which cyanide can form during wastewater treatment as well as those in which a false bias for total cyanide can be obtained during sample processing and provides guidance for appropriate sample handling, screening, and processing to ensure valid analytical results.
Assuntos
Técnicas de Química Analítica/métodos , Cianetos/análise , Esgotos/química , Eliminação de Resíduos Líquidos , Cloro/química , Cianetos/química , Nitritos/química , Sulfetos/químicaRESUMO
Understanding animal behavior and development requires visualization and analysis of their synaptic connectivity, but existing methods are laborious or may not depend on trans-synaptic interactions. Here we describe a transgenic approach for in vivo labeling of specific connections in Caenorhabditis elegans, which we term iBLINC. The method is based on BLINC (Biotin Labeling of INtercellular Contacts) and involves trans-synaptic enzymatic transfer of biotin by the Escherichia coli biotin ligase BirA onto an acceptor peptide. A BirA fusion with the presynaptic cell adhesion molecule NRX-1/neurexin is expressed presynaptically, whereas a fusion between the acceptor peptide and the postsynaptic protein NLG-1/neuroligin is expressed postsynaptically. The biotinylated acceptor peptide::NLG-1/neuroligin fusion is detected by a monomeric streptavidin::fluorescent protein fusion transgenically secreted into the extracellular space. Physical contact between neurons is insufficient to create a fluorescent signal, suggesting that synapse formation is required. The labeling approach appears to capture the directionality of synaptic connections, and quantitative analyses of synapse patterns display excellent concordance with electron micrograph reconstructions. Experiments using photoconvertible fluorescent proteins suggest that the method can be utilized for studies of protein dynamics at the synapse. Applying this technique, we find connectivity patterns of defined connections to vary across a population of wild-type animals. In aging animals, specific segments of synaptic connections are more susceptible to decline than others, consistent with dedicated mechanisms of synaptic maintenance. Collectively, we have developed an enzyme-based, trans-synaptic labeling method that allows high-resolution analyses of synaptic connectivity as well as protein dynamics at specific synapses of live animals.
Assuntos
Biotinilação/métodos , Caenorhabditis elegans/fisiologia , Neurônios/metabolismo , Sinapses/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Moléculas de Adesão Celular Neuronais/metabolismoRESUMO
Synapse elimination occurs in development, plasticity, and disease. Although the importance of synapse elimination has been documented in many studies, the molecular mechanisms underlying this process are unclear. Here, using the development of C. elegans RME neurons as a model, we have uncovered a function for the apoptosis pathway in synapse elimination. We find that the conserved apoptotic cell death (CED) pathway and axonal mitochondria are required for the elimination of transiently formed clusters of presynaptic components in RME neurons. This function of the CED pathway involves the activation of the actin-filament-severing protein, GSNL-1. Furthermore, we show that caspase CED-3 cleaves GSNL-1 at a conserved C-terminal region and that the cleaved active form of GSNL-1 promotes its actin-severing ability. Our data suggest that activation of the CED pathway contributes to selective elimination of synapses through disassembly of the actin filament network.
Assuntos
Apoptose , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Caspases/genética , Caspases/metabolismo , Proteínas Sensoras de Cálcio Intracelular/química , Proteínas Sensoras de Cálcio Intracelular/genética , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Neurônios/patologia , Proteólise , Sinapses/patologiaRESUMO
A rate-limiting step in determining a connectome, the set of all synaptic connections in a nervous system, is extraction of the relevant information from serial electron micrographs. Here we introduce a software application, Elegance, that speeds acquisition of the minimal dataset necessary, allowing the discovery of new connectomes. We have used Elegance to obtain new connectivity data in the nematode worm Caenorhabditis elegans. We analyze the accuracy that can be obtained, which is limited by unresolvable ambiguities at some locations in electron microscopic images. Elegance is useful for reconstructing connectivity in any region of neuropil of sufficiently small size.
Assuntos
Caenorhabditis elegans/metabolismo , Conectoma/métodos , Animais , Microscopia Eletrônica , Software , Sinapses/metabolismoRESUMO
The anterior-posterior axis of the Caenorhabditis elegans embryo is elaborated at the one-cell stage by the polarization of the partitioning (PAR) proteins at the cell cortex. Polarization is established under the control of the Rho GTPase RHO-1 and is maintained by the Rho GTPase CDC-42. To understand more clearly the role of the Rho family GTPases in polarization and division of the early embryo, we constructed a fluorescent biosensor to determine the localization of CDC-42 activity in the living embryo. A genetic screen using this biosensor identified one positive (putative guanine nucleotide exchange factor [GEF]) and one negative (putative GTPase activating protein [GAP]) regulator of CDC-42 activity: CGEF-1 and CHIN-1. CGEF-1 was required for robust activation, whereas CHIN-1 restricted the spatial extent of CDC-42 activity. Genetic studies placed CHIN-1 in a novel regulatory loop, parallel to loop described previously, that maintains cortical PAR polarity. We found that polarized distributions of the nonmuscle myosin NMY-2 at the cell cortex are independently produced by the actions of RHO-1, and its effector kinase LET-502, during establishment phase and CDC-42, and its effector kinase MRCK-1, during maintenance phase. CHIN-1 restricted NMY-2 recruitment to the anterior during maintenance phase, consistent with its role in polarizing CDC-42 activity during this phase.