Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Atheroscler Rep ; 23(6): 23, 2021 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-33772657

RESUMO

PURPOSE OF REVIEW: The term high density lipoproteins (HDL) refers to an eclectic collection of subparticles that play diverse roles in physiology. Here, we define the term "HDL subspecies" and review recent work on their molecular characterization and relation to disease, focusing on cardiovascular disease and diabetes. RECENT FINDINGS: The HDL family contains over 200 proteins and nearly 200 lipids that partition into different particles in plasma. Simple subfractionation of HDL based on a particular physicochemical property has not risen to the challenge of revealing the roles of specific particles in disease. However, by targeting minor protein or lipid components, a handful of compositionally defined HDL subspecies have been described and characterized. By combining targeted particle isolation techniques with the power of large human studies, progress is being made in understanding HDL subspecies functions and implications for disease. However, much work remains before these advancements can be translated into disease mitigation strategies.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus , Humanos , Lipídeos , Lipoproteínas , Lipoproteínas HDL
2.
J Lipid Res ; 59(7): 1244-1255, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29773713

RESUMO

APOA1 is the most abundant protein in HDL. It modulates interactions that affect HDL's cardioprotective functions, in part via its activation of the enzyme, LCAT. On nascent discoidal HDL, APOA1 comprises 10 α-helical repeats arranged in an anti-parallel stacked-ring structure that encapsulates a lipid bilayer. Previous chemical cross-linking studies suggested that these APOA1 rings can adopt at least two different orientations, or registries, with respect to each other; however, the functional impact of these structural changes is unknown. Here, we placed cysteine residues at locations predicted to form disulfide bonds in each orientation and then measured APOA1's ability to adopt the two registries during HDL particle formation. We found that most APOA1 oriented with the fifth helix of one molecule across from fifth helix of the other (5/5 helical registry), but a fraction adopted a 5/2 registry. Engineered HDLs that were locked in 5/5 or 5/2 registries by disulfide bonds equally promoted cholesterol efflux from macrophages, indicating functional particles. However, unlike the 5/5 registry or the WT, the 5/2 registry impaired LCAT cholesteryl esterification activity (P < 0.001), despite LCAT binding equally to all particles. Chemical cross-linking studies suggest that full LCAT activity requires a hybrid epitope composed of helices 5-7 on one APOA1 molecule and helices 3-4 on the other. Thus, APOA1 may use a reciprocating thumbwheel-like mechanism to activate HDL-remodeling proteins.


Assuntos
Apolipoproteína A-I/metabolismo , HDL-Colesterol/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Apolipoproteína A-I/genética , Ativação Enzimática , Humanos , Mutação
3.
Nat Struct Mol Biol ; 24(12): 1093-1099, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29131142

RESUMO

Apolipoprotein (apo)A-I is an organizing scaffold protein that is critical to high-density lipoprotein (HDL) structure and metabolism, probably mediating many of its cardioprotective properties. However, HDL biogenesis is poorly understood, as lipid-free apoA-I has been notoriously resistant to high-resolution structural study. Published models from low-resolution techniques share certain features but vary considerably in shape and secondary structure. To tackle this central issue in lipoprotein biology, we assembled a team of structural biologists specializing in apolipoproteins and set out to build a consensus model of monomeric lipid-free human apoA-I. Combining novel and published cross-link constraints, small-angle X-ray scattering (SAXS), hydrogen-deuterium exchange (HDX) and crystallography data, we propose a time-averaged model consistent with much of the experimental data published over the last 40 years. The model provides a long-sought platform for understanding and testing details of HDL biogenesis, structure and function.


Assuntos
Apolipoproteína A-I/metabolismo , Lipoproteínas HDL/biossíntese , Lipoproteínas HDL/metabolismo , Modelos Moleculares , Cardiotônicos/metabolismo , Simulação por Computador , Cristalografia por Raios X , Humanos , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA