Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(18): 186501, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38759190

RESUMO

The Kitaev model on a honeycomb lattice may provide a robust topological quantum memory platform, but finding a material that realizes the unique spin-liquid phase remains a considerable challenge. We demonstrate that an effective Kitaev Hamiltonian can arise from a half-filled Fermi-Hubbard Hamiltonian where each site can experience a magnetic field in a different direction. As such, we provide a method for realizing the Kitaev spin liquid on a single hexagonal plaquette made up of 12 quantum dots. Despite the small system size, there are clear signatures of the Kitaev spin-liquid ground state, and there is a range of parameters where these signatures are predicted, allowing a potential platform where Kitaev spin-liquid physics can be explored experimentally in quantum dot plaquettes.

2.
Phys Rev Lett ; 127(8): 087201, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34477420

RESUMO

At strong repulsion, the triangular-lattice Hubbard model is described by s=1/2 spins with nearest-neighbor antiferromagnetic Heisenberg interactions and exhibits conventional 120° order. Using the infinite density matrix renormalization group and exact diagonalization, we study the effect of the additional four-spin interactions naturally generated from the underlying Mott-insulator physics of electrons as the repulsion decreases. Although these interactions have historically been connected with a gapless ground state with emergent spinon Fermi surface, we find that, at physically relevant parameters, they stabilize a chiral spin liquid (CSL) of Kalmeyer-Laughlin (KL) type, clarifying observations in recent studies of the Hubbard model. We then present a self-consistent solution based on a mean-field rewriting of the interaction to obtain a Hamiltonian with similarities to the parent Hamiltonian of the KL state, providing a physical understanding for the origin of the CSL.

3.
Nat Commun ; 14(1): 4691, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542056

RESUMO

Antiferromagnetic spintronics is an emerging area of quantum technologies that leverage the coupling between spin and orbital degrees of freedom in exotic materials. Spin-orbit interactions allow spin or angular momentum to be injected via electrical stimuli to manipulate the spin texture of a material, enabling the storage of information and energy. In general, the physical process is intrinsically local: spin is carried by an electrical current, imparted into the magnetic system, and the spin texture will then rotate in the region of current flow. In this study, we show that spin information can be transported and stored "non-locally" in the material FexNbS2. We propose that collective modes can manipulate the spin texture away from the flowing current, an effect amplified by strong magnetoelastic coupling of the ordered state. This suggests a novel way to store and transport spin information in strongly spin-orbit coupled magnetic systems.

4.
Science ; 375(6576): 76-81, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34855511

RESUMO

The study of quantum phase transitions that are not clearly associated with broken symmetry is a major effort in condensed matter physics, particularly in regard to the problem of high-temperature superconductivity, for which such transitions are thought to underlie the mechanism of superconductivity itself. Here we argue that the putative quantum critical point in the prototypical unconventional superconductor CeCoIn5 is characterized by the delocalization of electrons in a transition that connects two Fermi surfaces of different volumes, with no apparent broken symmetry. Drawing on established theory of f-electron metals, we discuss an interpretation for such a transition that involves the fractionalization of spin and charge, a model that effectively describes the anomalous transport behavior we measured for the Hall effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA