Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
1.
Cell ; 186(4): 693-714, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36803602

RESUMO

Decades of research have identified genetic factors and biochemical pathways involved in neurodegenerative diseases (NDDs). We present evidence for the following eight hallmarks of NDD: pathological protein aggregation, synaptic and neuronal network dysfunction, aberrant proteostasis, cytoskeletal abnormalities, altered energy homeostasis, DNA and RNA defects, inflammation, and neuronal cell death. We describe the hallmarks, their biomarkers, and their interactions as a framework to study NDDs using a holistic approach. The framework can serve as a basis for defining pathogenic mechanisms, categorizing different NDDs based on their primary hallmarks, stratifying patients within a specific NDD, and designing multi-targeted, personalized therapies to effectively halt NDDs.


Assuntos
Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/patologia , Proteostase , Agregação Patológica de Proteínas/metabolismo , Morte Celular , Citoesqueleto/metabolismo
2.
Cell ; 146(1): 9-11, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21729776

RESUMO

Mutations in the GBA gene that encodes glucocerebrosidase cause the lysosomal storage disorder Gaucher disease but also increase the risk for Parkinson's disease. Mazzulli et al. (2011) uncover a possible mechanism to explain this connection: loss of glucocerebrosidase creates a positive feedback loop of reduced lysosomal function and α-synuclein accumulation, ultimately leading to neurodegeneration.

4.
Cell ; 143(5): 826-36, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21111240

RESUMO

The Reelin ligand regulates a Dab1-dependent signaling pathway required for brain lamination and normal dendritogenesis, but the specific mechanisms underlying these actions remain unclear. We find that Stk25, a modifier of Reelin-Dab1 signaling, regulates Golgi morphology and neuronal polarization as part of an LKB1-Stk25-Golgi matrix protein 130 (GM130) signaling pathway. Overexpression of Stk25 induces Golgi condensation and multiple axons, both of which are rescued by Reelin treatment. Reelin stimulation of cultured neurons induces the extension of the Golgi into dendrites, which is suppressed by Stk25 overexpression. In vivo, Reelin and Dab1 are required for the normal extension of the Golgi apparatus into the apical dendrites of hippocampal and neocortical pyramidal neurons. This demonstrates that the balance between Reelin-Dab1 signaling and LKB1-Stk25-GM130 regulates Golgi dispersion, axon specification, and dendrite growth and provides insights into the importance of the Golgi apparatus for cell polarization.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Complexo de Golgi/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Serina Endopeptidases/metabolismo , Animais , Linhagem Celular , Separação Celular , Células Cultivadas , Hipocampo/metabolismo , Humanos , Camundongos , Ratos , Proteína Reelina
5.
Proc Natl Acad Sci U S A ; 119(43): e2205492119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36256825

RESUMO

Genetic variation at the leucine-rich repeat kinase 2 (LRRK2) locus contributes to an enhanced risk of familial and sporadic Parkinson's disease. Previous data have demonstrated that recruitment to various membranes of the endolysosomal system results in LRRK2 activation. However, the mechanism(s) underlying LRRK2 activation at endolysosomal membranes and the cellular consequences of these events are still poorly understood. Here, we directed LRRK2 to lysosomes and early endosomes, triggering both LRRK2 autophosphorylation and phosphorylation of the direct LRRK2 substrates Rab10 and Rab12. However, when directed to the lysosomal membrane, pRab10 was restricted to perinuclear lysosomes, whereas pRab12 was visualized on both peripheral and perinuclear LRRK2+ lysosomes, suggesting that lysosomal positioning provides additional regulation of LRRK2-dependent Rab phosphorylation. Anterograde transport of lysosomes to the cell periphery by increasing the expression of ARL8B and SKIP or by knockdown of JIP4 blocked the recruitment and phosphorylation of Rab10 by LRRK2. The absence of pRab10 from the lysosomal membrane prevented the formation of a lysosomal tubulation and sorting process we previously named LYTL. Conversely, overexpression of RILP resulted in lysosomal clustering within the perinuclear area and increased LRRK2-dependent Rab10 recruitment and phosphorylation. The regulation of Rab10 phosphorylation in the perinuclear area depends on counteracting phosphatases, as the knockdown of phosphatase PPM1H significantly increased pRab10 signal and lysosomal tubulation in the perinuclear region. Our findings suggest that LRRK2 can be activated at multiple cellular membranes, including lysosomes, and that lysosomal positioning further provides the regulation of some Rab substrates likely via differential phosphatase activity or effector protein presence in nearby cellular compartments.


Assuntos
Lisossomos , Proteínas rab de Ligação ao GTP , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Fosforilação , Leucina/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Lisossomos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Mutação
6.
Ann Neurol ; 93(5): 1012-1022, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36695634

RESUMO

OBJECTIVE: Identification of genetic risk factors for Parkinson disease (PD) has to date been primarily limited to the study of single nucleotide variants, which only represent a small fraction of the genetic variation in the human genome. Consequently, causal variants for most PD risk are not known. Here we focused on structural variants (SVs), which represent a major source of genetic variation in the human genome. We aimed to discover SVs associated with PD risk by performing the first large-scale characterization of SVs in PD. METHODS: We leveraged a recently developed computational pipeline to detect and genotype SVs from 7,772 Illumina short-read whole genome sequencing samples. Using this set of SV variants, we performed a genome-wide association study using 2,585 cases and 2,779 controls and identified SVs associated with PD risk. Furthermore, to validate the presence of these variants, we generated a subset of matched whole-genome long-read sequencing data. RESULTS: We genotyped and tested 3,154 common SVs, representing over 412 million nucleotides of previously uncatalogued genetic variation. Using long-read sequencing data, we validated the presence of three novel deletion SVs that are associated with risk of PD from our initial association analysis, including a 2 kb intronic deletion within the gene LRRN4. INTERPRETATION: We identified three SVs associated with genetic risk of PD. This study represents the most comprehensive assessment of the contribution of SVs to the genetic risk of PD to date. ANN NEUROL 2023;93:1012-1022.


Assuntos
Estudo de Associação Genômica Ampla , Doença de Parkinson , Humanos , Doença de Parkinson/genética , Genoma Humano , Sequenciamento Completo do Genoma , Genótipo
7.
PLoS Biol ; 19(12): e3001480, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34914695

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) cause autosomal dominant Parkinson disease (PD), while polymorphic LRRK2 variants are associated with sporadic PD. PD-linked mutations increase LRRK2 kinase activity and induce neurotoxicity in vitro and in vivo. The small GTPase Rab8a is a LRRK2 kinase substrate and is involved in receptor-mediated recycling and endocytic trafficking of transferrin, but the effect of PD-linked LRRK2 mutations on the function of Rab8a is poorly understood. Here, we show that gain-of-function mutations in LRRK2 induce sequestration of endogenous Rab8a to lysosomes in overexpression cell models, while pharmacological inhibition of LRRK2 kinase activity reverses this phenotype. Furthermore, we show that LRRK2 mutations drive association of endocytosed transferrin with Rab8a-positive lysosomes. LRRK2 has been nominated as an integral part of cellular responses downstream of proinflammatory signals and is activated in microglia in postmortem PD tissue. Here, we show that iPSC-derived microglia from patients carrying the most common LRRK2 mutation, G2019S, mistraffic transferrin to lysosomes proximal to the nucleus in proinflammatory conditions. Furthermore, G2019S knock-in mice show a significant increase in iron deposition in microglia following intrastriatal LPS injection compared to wild-type mice, accompanied by striatal accumulation of ferritin. Our data support a role of LRRK2 in modulating iron uptake and storage in response to proinflammatory stimuli in microglia.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Proteínas rab de Ligação ao GTP/metabolismo , Idoso , Animais , Transporte Biológico , Corpo Estriado , Mutação com Ganho de Função/genética , Células HEK293 , Humanos , Ferro/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia , Pessoa de Meia-Idade , Mutação , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases , Transferrina/metabolismo , Transferrinas/genética , Transferrinas/metabolismo , Proteínas rab de Ligação ao GTP/genética
8.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34312226

RESUMO

Mechanisms controlling myelination during central nervous system (CNS) maturation play a pivotal role in the development and refinement of CNS circuits. The transcription factor THAP1 is essential for timing the inception of myelination during CNS maturation through a cell-autonomous role in the oligodendrocyte lineage. Here, we demonstrate that THAP1 modulates the extracellular matrix (ECM) composition by regulating glycosaminoglycan (GAG) catabolism within oligodendrocyte progenitor cells (OPCs). Thap1-/- OPCs accumulate and secrete excess GAGs, inhibiting their maturation through an autoinhibitory mechanism. THAP1 controls GAG metabolism by binding to and regulating the GusB gene encoding ß-glucuronidase, a GAG-catabolic lysosomal enzyme. Applying GAG-degrading enzymes or overexpressing ß-glucuronidase rescues Thap1-/- OL maturation deficits in vitro and in vivo. Our studies establish lysosomal GAG catabolism within OPCs as a critical mechanism regulating oligodendrocyte development.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Matriz Extracelular/metabolismo , Lisossomos/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout
9.
Alzheimers Dement ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923692

RESUMO

INTRODUCTION: Variants of uncertain significance (VUS) surged with affordable genetic testing, posing challenges for determining pathogenicity. We examine the pathogenicity of a novel VUS P93S in Annexin A11 (ANXA11) - an amyotrophic lateral sclerosis/frontotemporal dementia-associated gene - in a corticobasal syndrome kindred. Established ANXA11 mutations cause ANXA11 aggregation, altered lysosomal-RNA granule co-trafficking, and transactive response DNA binding protein of 43 kDa (TDP-43) mis-localization. METHODS: We described the clinical presentation and explored the phenotypic diversity of ANXA11 variants. P93S's effect on ANXA11 function and TDP-43 biology was characterized in induced pluripotent stem cell-derived neurons alongside multiomic neuronal and microglial profiling. RESULTS: ANXA11 mutations were linked to corticobasal syndrome cases. P93S led to decreased lysosome colocalization, neuritic RNA, and nuclear TDP-43 with cryptic exon expression. Multiomic microglial signatures implicated immune dysregulation and interferon signaling pathways. DISCUSSION: This study establishes ANXA11 P93S pathogenicity, broadens the phenotypic spectrum of ANXA11 mutations, underscores neuronal and microglial dysfunction in ANXA11 pathophysiology, and demonstrates the potential of cellular models to determine variant pathogenicity. HIGHLIGHTS: ANXA11 P93S is a pathogenic variant. Corticobasal syndrome is part of the ANXA11 phenotypic spectrum. Hybridization chain reaction fluorescence in situ hybridization (HCR FISH) is a new tool for the detection of cryptic exons due to TDP-43-related loss of splicing regulation. Microglial ANXA11 and related immune pathways are important drivers of disease. Cellular models are powerful tools for adjudicating variants of uncertain significance.

10.
Brain ; 145(12): 4349-4367, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36074904

RESUMO

Parkinson's disease is a common incurable neurodegenerative disease. The identification of genetic variants via genome-wide association studies has considerably advanced our understanding of the Parkinson's disease genetic risk. Understanding the functional significance of the risk loci is now a critical step towards translating these genetic advances into an enhanced biological understanding of the disease. Impaired mitophagy is a key causative pathway in familial Parkinson's disease, but its relevance to idiopathic Parkinson's disease is unclear. We used a mitophagy screening assay to evaluate the functional significance of risk genes identified through genome-wide association studies. We identified two new regulators of PINK1-dependent mitophagy initiation, KAT8 and KANSL1, previously shown to modulate lysine acetylation. These findings suggest PINK1-mitophagy is a contributing factor to idiopathic Parkinson's disease. KANSL1 is located on chromosome 17q21 where the risk associated gene has long been considered to be MAPT. While our data do not exclude a possible association between the MAPT gene and Parkinson's disease, they provide strong evidence that KANSL1 plays a crucial role in the disease. Finally, these results enrich our understanding of physiological events regulating mitophagy and establish a novel pathway for drug targeting in neurodegeneration.


Assuntos
Mitofagia , Doença de Parkinson , Humanos , Estudo de Associação Genômica Ampla , Mitofagia/fisiologia , Doenças Neurodegenerativas , Doença de Parkinson/metabolismo , Proteínas Quinases/genética , Proteínas tau/genética
11.
J Neurochem ; 162(3): 245-261, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35713360

RESUMO

Human DJ-1 is a cytoprotective protein whose absence causes Parkinson's disease and is also associated with other diseases. DJ-1 has an established role as a redox-regulated protein that defends against oxidative stress and mitochondrial dysfunction. Multiple studies have suggested that DJ-1 is also a protein/nucleic acid deglycase that plays a key role in the repair of glycation damage caused by methylglyoxal (MG), a reactive α-keto aldehyde formed by central metabolism. Contradictory reports suggest that DJ-1 is a glyoxalase but not a deglycase and does not play a major role in glycation defense. Resolving this issue is important for understanding how DJ-1 protects cells against insults that can cause disease. We find that DJ-1 reduces levels of reversible adducts of MG with guanine and cysteine in vitro. The steady-state kinetics of DJ-1 acting on reversible hemithioacetal substrates are fitted adequately with a computational kinetic model that requires only a DJ-1 glyoxalase activity, supporting the conclusion that deglycation is an apparent rather than a true activity of DJ-1. Sensitive and quantitative isotope-dilution mass spectrometry shows that DJ-1 modestly reduces the levels of some irreversible guanine and lysine glycation products in primary and cultured neuronal cell lines and whole mouse brain, consistent with a small but measurable effect on total neuronal glycation burden. However, DJ-1 does not improve cultured cell viability in exogenous MG. In total, our results suggest that DJ-1 is not a deglycase and has only a minor role in protecting neurons against methylglyoxal toxicity.


Assuntos
Estresse Oxidativo , Aldeído Pirúvico , Animais , Glicosilação , Guanina , Humanos , Camundongos , Neurônios/metabolismo , Proteína Desglicase DJ-1/metabolismo , Aldeído Pirúvico/química , Aldeído Pirúvico/metabolismo
12.
Neurobiol Dis ; 170: 105769, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35580815

RESUMO

Coding mutations in the Leucine-rich repeat kinase 2 (LRRK2) gene, which are associated with dominantly inherited Parkinson's disease (PD), lead to an increased activity of the encoded LRRK2 protein kinase. As such, kinase inhibitors are being considered as therapeutic agents for PD. It is therefore of interest to understand the mechanism(s) by which LRRK2 is activated during cellular signaling. Lysosomal membrane damage represents one way of activating LRRK2 and leads to phosphorylation of downstream RAB substrates and recruitment of the motor adaptor protein JIP4. However, it is unclear whether the activation of LRRK2 would be seen at other membranes of the endolysosomal system, where LRRK2 has also shown to be localized, or whether these signaling events can be induced without membrane damage. Here, we use a rapamycin-dependent oligomerization system to direct LRRK2 to various endomembranes including the Golgi apparatus, lysosomes, the plasma membrane, recycling, early, and late endosomes. Irrespective of membrane location, the recruitment of LRRK2 to membranes results in local accumulation of phosphorylated RAB10, RAB12, and JIP4. We also show that endogenous RAB29, previously nominated as an activator of LRRK2 based on overexpression, is not required for activation of LRRK2 at the Golgi nor lysosome. We therefore conclude that LRRK2 signaling to RAB10, RAB12, and JIP4 can be activated once LRRK2 is accumulated at any cellular organelle along the endolysosomal pathway.


Assuntos
Endossomos , Proteínas rab de Ligação ao GTP , Endossomos/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Lisossomos/metabolismo , Mutação , Fosforilação , Proteínas rab de Ligação ao GTP/metabolismo
13.
Ann Neurol ; 90(1): 76-88, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33938021

RESUMO

OBJECTIVE: The aim of this study was to search for genes/variants that modify the effect of LRRK2 mutations in terms of penetrance and age-at-onset of Parkinson's disease. METHODS: We performed the first genomewide association study of penetrance and age-at-onset of Parkinson's disease in LRRK2 mutation carriers (776 cases and 1,103 non-cases at their last evaluation). Cox proportional hazard models and linear mixed models were used to identify modifiers of penetrance and age-at-onset of LRRK2 mutations, respectively. We also investigated whether a polygenic risk score derived from a published genomewide association study of Parkinson's disease was able to explain variability in penetrance and age-at-onset in LRRK2 mutation carriers. RESULTS: A variant located in the intronic region of CORO1C on chromosome 12 (rs77395454; p value = 2.5E-08, beta = 1.27, SE = 0.23, risk allele: C) met genomewide significance for the penetrance model. Co-immunoprecipitation analyses of LRRK2 and CORO1C supported an interaction between these 2 proteins. A region on chromosome 3, within a previously reported linkage peak for Parkinson's disease susceptibility, showed suggestive associations in both models (penetrance top variant: p value = 1.1E-07; age-at-onset top variant: p value = 9.3E-07). A polygenic risk score derived from publicly available Parkinson's disease summary statistics was a significant predictor of penetrance, but not of age-at-onset. INTERPRETATION: This study suggests that variants within or near CORO1C may modify the penetrance of LRRK2 mutations. In addition, common Parkinson's disease associated variants collectively increase the penetrance of LRRK2 mutations. ANN NEUROL 2021;90:82-94.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/genética , Idoso , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Penetrância
14.
Mov Disord ; 37(1): 95-105, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34542912

RESUMO

BACKGROUND: The leucine-rich repeat kinase 2 (LRRK2) gene harbors both rare highly damaging missense variants (eg, p.G2019S) and common noncoding variants (eg, rs76904798) with lower effect sizes that are associated with Parkinson's disease (PD) risk. OBJECTIVES: This study aimed to investigate in a large meta-analysis whether the LRRK2 Genome-Wide Association Study (GWAS) signal represented by rs76904798 is independently associated with PD risk from LRRK2 coding variation and whether complex linkage disequilibrium structures with p.G2019S and the 5' noncoding haplotype account for the association of LRRK2 coding variants. METHODS: We performed a meta-analysis using imputed genotypes from 17,838 patients, 13,404 proxy patients, and 173,639 healthy controls of European ancestry. We excluded carriers of p.G2019S and/or rs76904798 to clarify the role of LRRK2 coding variation in mediating disease risk and excluded carriers of relatively rare LRRK2 coding variants to assess the independence of rs76904798. We also investigated the co-inheritance of LRRK2 coding variants with p.G2019S, rs76904798, and p.N2081D. RESULTS: LRRK2 rs76904798 remained significantly associated with PD after excluding the carriers of relatively rare LRRK2 coding variants. LRRK2 p.R1514Q and p.N2081D were frequently co-inherited with rs76904798, and the allele distribution of p.S1647T significantly changed among patients after removing rs76904798 carriers. CONCLUSIONS: These data suggest that the LRRK2 coding variants previously related to PD (p.N551K, p.R1398H, p.M1646T, and p.N2081D) do not drive the 5' noncoding GWAS signal. These data, however, do not preclude the independent association of the haplotype p.N551K-p.R1398H and p.M1646T with altered disease risk. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Assuntos
Doença de Parkinson , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos/genética , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação , Doença de Parkinson/genética
15.
Glia ; 69(3): 681-696, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33045109

RESUMO

The progressive neuropathological damage seen in Parkinson's disease (PD) is thought to be related to the spreading of aggregated forms of α-synuclein. Clearance of extracellular α-synuclein released by degenerating neurons may be therefore a key mechanism to control the concentration of α-synuclein in the extracellular space. Several molecular chaperones control misfolded protein accumulation in the extracellular compartment. Among these, clusterin, a glycoprotein associated with Alzheimer's disease, binds α-synuclein aggregated species and is present in Lewy bodies, intraneuronal aggregates mainly composed by fibrillary α-synuclein. In this study, using murine primary astrocytes with clusterin genetic deletion, human-induced pluripotent stem cell (iPSC)-derived astrocytes with clusterin silencing and two animal models relevant for PD we explore how clusterin affects the clearance of α-synuclein aggregates by astrocytes. Our findings showed that astrocytes take up α-synuclein preformed fibrils (pffs) through dynamin-dependent endocytosis and that clusterin levels are modulated in the culture media of cells upon α-synuclein pffs exposure. Specifically, we found that clusterin interacts with α-synuclein pffs in the extracellular compartment and the clusterin/α-synuclein complex can be internalized by astrocytes. Mechanistically, using clusterin knock-out primary astrocytes and clusterin knock-down hiPSC-derived astrocytes we observed that clusterin limits the uptake of α-synuclein pffs by cells. Interestingly, we detected increased levels of clusterin in the adeno-associated virus- and the α-synuclein pffs- injected mouse model, suggesting a crucial role of this chaperone in the pathogenesis of PD. Overall, our observations indicate that clusterin can limit the uptake of extracellular α-synuclein aggregates by astrocytes and, hence, contribute to the spreading of Parkinson pathology.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Astrócitos , Clusterina/genética , Humanos , Corpos de Lewy , Camundongos , alfa-Sinucleína/genética
16.
17.
Cell Mol Life Sci ; 77(18): 3611-3626, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31760463

RESUMO

An intrinsically disordered neuronal protein α-synuclein (αSyn) is known to cause mitochondrial dysfunction, contributing to loss of dopaminergic neurons in Parkinson's disease. Through yet poorly defined mechanisms, αSyn crosses mitochondrial outer membrane and targets respiratory complexes leading to bioenergetics defects. Here, using neuronally differentiated human cells overexpressing wild-type αSyn, we show that the major metabolite channel of the outer membrane, the voltage-dependent anion channel (VDAC), is a pathway for αSyn translocation into the mitochondria. Importantly, the neuroprotective cholesterol-like synthetic compound olesoxime inhibits this translocation. By applying complementary electrophysiological and biophysical approaches, we provide mechanistic insights into the interplay between αSyn, VDAC, and olesoxime. Our data suggest that olesoxime interacts with VDAC ß-barrel at the lipid-protein interface thus hindering αSyn translocation through the VDAC pore and affecting VDAC voltage gating. We propose that targeting αSyn translocation through VDAC could represent a key mechanism for the development of new neuroprotective strategies.


Assuntos
Colestenonas/farmacologia , Mitocôndrias/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Canal de Ânion 1 Dependente de Voltagem/metabolismo , alfa-Sinucleína/metabolismo , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Ligação Proteica , Transporte Proteico/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Canal de Ânion 1 Dependente de Voltagem/antagonistas & inibidores , Canal de Ânion 1 Dependente de Voltagem/genética , alfa-Sinucleína/genética
18.
J Biol Chem ; 294(15): 5907-5913, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30796162

RESUMO

Mutation in leucine-rich repeat kinase 2 (LRRK2) is a common cause of familial Parkinson's disease (PD). Recently, we showed that a disease-associated mutation R1441H rendered the GTPase domain of LRRK2 catalytically less active and thereby trapping it in a more persistently "on" conformation. However, the mechanism involved and characteristics of this on conformation remained unknown. Here, we report that the Ras of complex protein (ROC) domain of LRRK2 exists in a dynamic dimer-monomer equilibrium that is oppositely driven by GDP and GTP binding. We also observed that the PD-associated mutations at residue 1441 impair this dynamic and shift the conformation of ROC to a GTP-bound-like monomeric conformation. Moreover, we show that residue Arg-1441 is critical for regulating the conformational dynamics of ROC. In summary, our results reveal that the PD-associated substitutions at Arg-1441 of LRRK2 alter monomer-dimer dynamics and thereby trap its GTPase domain in an activated state.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Mutação de Sentido Incorreto , Doença de Parkinson , Multimerização Proteica , Substituição de Aminoácidos , Guanosina Difosfato/química , Guanosina Difosfato/genética , Guanosina Trifosfato/química , Guanosina Trifosfato/genética , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/enzimologia , Doença de Parkinson/genética , Domínios Proteicos
19.
Neurobiol Dis ; 141: 104948, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32434048

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) are an established cause of inherited Parkinson's disease (PD). LRRK2 is expressed in both neurons and glia in the central nervous system, but its physiological function(s) in each of these cell types is uncertain. Through sequential screens, we report a functional interaction between LRRK2 and Clathrin adaptor protein complex 2 (AP2). Analysis of LRRK2 KO tissue revealed a significant dysregulation of AP2 complex components, suggesting LRRK2 may act upstream of AP2. In line with this hypothesis, expression of LRRK2 was found to modify recruitment and phosphorylation of AP2. Furthermore, expression of LRRK2 containing the R1441C pathogenic mutation resulted in impaired clathrin-mediated endocytosis (CME). A decrease in activity-dependent synaptic vesicle endocytosis was also observed in neurons harboring an endogenous R1441C LRRK2 mutation. Alongside LRRK2, several PD-associated genes intersect with membrane-trafficking pathways. To investigate the genetic association between Clathrin-trafficking and PD, we used polygenetic risk profiling from IPDGC genome wide association studies (GWAS) datasets. Clathrin-dependent endocytosis genes were found to be associated with PD across multiple cohorts, suggesting common variants at these loci represent a cumulative risk factor for disease. Taken together, these findings suggest CME is a LRRK2-mediated, PD relevant pathway.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Endocitose , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doença de Parkinson/metabolismo , Animais , Células HEK293 , Humanos , Camundongos , Neurônios/metabolismo , Fosforilação , Vesículas Sinápticas/metabolismo
20.
Hum Mol Genet ; 27(2): 385-395, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29177506

RESUMO

Human genetic studies implicate LRRK2 and RAB7L1 in susceptibility to Parkinson disease (PD). These two genes function in the same pathway, as knockout of Rab7L1 results in phenotypes similar to LRRK2 knockout, and studies in cells and model organisms demonstrate LRRK2 and Rab7L1 interact in the endolysosomal system. Recently, a subset of Rab proteins have been identified as LRRK2 kinase substrates. Herein, we find that Rab8, Rab10, and Rab7L1 must be membrane and GTP-bound for LRRK2 phosphorylation. LRRK2 mutations that cause PD including R1441C, Y1699C, and G2019S all increase LRRK2 phosphorylation of Rab7L1 four-fold over wild-type LRRK2 in cells, resulting in the phosphorylation of nearly one-third the available Rab7L1 protein in cells. In contrast, the most common pathogenic LRRK2 mutation, G2019S, does not upregulate LRRK2-mediated phosphorylation of Rab8 or Rab10. LRRK2 interaction with membrane and GTP-bound Rab7L1, but not Rab8 or Rab10, results in the activation of LRRK2 autophosphorylation at the serine 1292 position, required for LRRK2 toxicity. Further, Rab7L1 controls the proportion of LRRK2 that is membrane-associated, and LRRK2 mutations enhance Rab7L1-mediated recruitment of LRRK2 to the trans-Golgi network. Interaction studies with the Rab8 and Rab10 GTPase-activating protein TBC1D4/AS160 demonstrate that LRRK2 phosphorylation may block membrane and GTP-bound Rab protein interaction with effectors. These results suggest reciprocal regulation between LRRK2 and Rab protein substrates, where Rab7L1-mediated upregulation of LRRK2 kinase activity results in the stabilization of membrane and GTP-bound Rab proteins that may be unable to interact with Rab effector proteins.


Assuntos
Guanosina Trifosfato/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab1 de Ligação ao GTP/metabolismo , Rede trans-Golgi/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , Mutação , Fosforilação , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA