Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Exp Biol ; 227(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38206870

RESUMO

We used thermal imagining and heat balance modelling to examine the thermal ecology of wild mammals, using the diurnal marsupial numbat (Myrmecobius fasciatus) as a model. Body surface temperature was measured using infra-red thermography at environmental wet and dry bulb temperatures of 11.7-29°C and 16.4-49.3°C, respectively; surface temperature varied for different body parts and with environmental temperature. Radiative and convective heat exchange varied markedly with environmental conditions and for various body surfaces reflecting their shapes, surface areas and projected areas. Both the anterior and posterior dorsolateral body areas functioned as thermal windows. Numbats in the shade had lower rates of solar radiative heat gain but non-solar avenues for radiative heat gain were substantial. Radiative gain was higher for black and lower for white stripes, but overall, the stripes had no thermal role. Total heat gain was generally positive (<4 to >20 W) and often greatly exceeded metabolic heat production (3-6 W). Our heat balance model indicates that high environmental heat loads limit foraging in open areas to as little as 10 min and that climate change may extend periods of inactivity, with implications for future conservation and management. We conclude that non-invasive thermal imaging is informative for modelling heat balance of free-living mammals.


Assuntos
Marsupiais , Animais , Marsupiais/metabolismo , Regulação da Temperatura Corporal , Temperatura Alta , Temperatura Corporal , Mamíferos
2.
J Exp Biol ; 220(Pt 7): 1341-1349, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28356368

RESUMO

It is unclear whether torpor really is uncommon amongst passerine birds. We therefore examined body temperature and thermoregulatory strategies of an Austral passerine, the white-browed babbler (Pomatostomus superciliosus), which has characteristics related to a high probability of torpor use; it is a sedentary, insectivorous, cooperative breeding species, which we studied during winter in a temperate habitat. Wild, free-living babblers maintained normothermy overnight, even at sub-zero ambient temperatures, with a mean minimum body temperature of 38.5±0.04°C that was independent of minimum black bulb temperature. Physiological variables measured in the laboratory revealed that babblers had a low basal metabolic rate and evaporative water loss, but their body temperature and thermal conductance were typical of those of other birds and they had a typical endothermic response to low ambient temperature. Huddling yielded significant energy savings at low temperatures and a roost nest created a microclimate that buffered against low temperatures. Low basal energy requirements, communal roosting and the insulation of a roost nest confer sufficient energetic benefits, allowing babblers to meet energy requirements without resorting to heterothermia, even in their depauperate, low-productivity landscape, suggesting that passerine birds use alternatives to torpor to balance their energy budgets when possible.


Assuntos
Regulação da Temperatura Corporal , Passeriformes/fisiologia , Torpor , Animais , Metabolismo Basal , Temperatura Corporal , Estações do Ano
3.
J Exp Biol ; 219(Pt 20): 3271-3283, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27802151

RESUMO

The short-beaked echidna (Tachyglossus aculeatus) is a monotreme and therefore provides a unique combination of phylogenetic history, morphological differentiation and ecological specialisation for a mammal. The echidna has a unique appendicular skeleton, a highly specialised myrmecophagous lifestyle and a mode of locomotion that is neither typically mammalian nor reptilian, but has aspects of both lineages. We therefore were interested in the interactions of locomotor biomechanics, ecology and movements for wild, free-living short-beaked echidnas. To assess locomotion in its complex natural environment, we attached both GPS and accelerometer loggers to the back of echidnas in both spring and summer. We found that the locomotor biomechanics of echidnas is unique, with lower stride length and stride frequency than reported for similar-sized mammals. Speed modulation is primarily accomplished through changes in stride frequency, with a mean of 1.39 Hz and a maximum of 2.31 Hz. Daily activity period was linked to ambient air temperature, which restricted daytime activity during the hotter summer months. Echidnas had longer activity periods and longer digging bouts in spring compared with summer. In summer, echidnas had higher walking speeds than in spring, perhaps because of the shorter time suitable for activity. Echidnas spent, on average, 12% of their time digging, which indicates their potential to excavate up to 204 m3 of soil a year. This information highlights the important contribution towards ecosystem health, via bioturbation, of this widespread Australian monotreme.


Assuntos
Acelerometria , Ecossistema , Sistemas de Informação Geográfica , Tachyglossidae/fisiologia , Animais , Fenômenos Biomecânicos , Peso Corporal , Estações do Ano , Especificidade da Espécie , Caminhada/fisiologia
4.
Proc Biol Sci ; 281(1784): 20140149, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24741015

RESUMO

It is a central paradigm of comparative physiology that the effect of humidity on evaporative water loss (EWL) is determined for most mammals and birds, in and below thermoneutrality, essentially by physics and is not under physiological regulation. Fick's law predicts that EWL should be inversely proportional to ambient relative humidity (RH) and linearly proportional to the water vapour pressure deficit (Δwvp) between animal and air. However, we show here for a small dasyurid marsupial, the little kaluta (Dasykaluta rosamondae), that EWL is essentially independent of RH (and Δwvp) at low RH (as are metabolic rate and thermal conductance). These results suggest regulation of a constant EWL independent of RH, a hitherto unappreciated capacity of endothermic vertebrates. Independence of EWL from RH conserves water and heat at low RH, and avoids physiological adjustments to changes in evaporative heat loss such as thermoregulation. Re-evaluation of previously published data for mammals and birds suggests that a lesser dependence of EWL on RH is observed more commonly than previously thought, suggesting that physiological independence of EWL of RH is not just an unusual capacity of a few species, such as the little kaluta, but a more general capability of many mammals and birds.


Assuntos
Regulação da Temperatura Corporal , Metabolismo Energético , Marsupiais/fisiologia , Perda Insensível de Água , Animais , Feminino , Umidade , Masculino , Temperatura , Austrália Ocidental
5.
Conserv Physiol ; 12(1): coae032, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803425

RESUMO

Thermoregulation is critical for endotherms living in hot, dry conditions, and maintaining optimal core body temperature (Tb) in a changing climate is an increasingly challenging task for mammals. Koalas (Phascolarctos cinereus) have evolved physiological and behavioural strategies to maintain homeostasis and regulate their Tb but are thought to be vulnerable to prolonged heat. We investigated how weather, behaviour and disease influence Tb for wild, free-living koalas during summer in north-west New South Wales. We matched Tb with daily behavioural observations in an ageing population where chlamydial disease is prevalent. Each individual koala had similar Tb rhythms (average Tb = 36.4 ± 0.05°C), but male koalas had higher Tb amplitude and more pronounced daily rhythm than females. Disease disrupted the 24-hr circadian pattern of Tb. Koala Tb increased with ambient temperature (Ta). On the hottest day of the study (maximum Ta = 40.8°C), we recorded the highest (Tb = 40.8°C) but also the lowest (Tb = 32.4°C) Tb ever documented for wild koalas, suggesting that they are more heterothermic than previously recognized. This requires individuals to predict days of extreme Ta from overnight and early morning conditions, adjusting Tb regulation accordingly, and it has never been reported before for koalas. The large diel amplitude and low minimum Tb observed suggest that koalas at our study site are energetically and nutritionally compromised, likely due to their age. Behaviour (i.e. tree hugging and drinking water) was not effective in moderating Tb. These results indicate that Ta and koala Tb are strongly interconnected and reinforce the importance of climate projections for predicting the future persistence of koalas throughout their current distribution. Global climate models forecast that dry, hot weather will continue to escalate and drought events will increase in frequency, duration and severity. This is likely to push koalas and other arboreal folivores towards their thermal limit.

6.
BMC Res Notes ; 16(1): 370, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38111014

RESUMO

OBJECTIVE: Roller swabbing of surfaces is an effective way to obtain environmental DNA, but the current DNA extraction method for these samples is equipment heavy, time consuming, and increases potential contamination through multiple handling. Here, we used rollers to swab a dog kennel and compared three DNA extraction approaches (water filtration, roller trimming and direct buffer) using two different platforms (Qiacube, Kingfisher). DNA extraction methods were evaluated based on cost, effort, DNA concentration and PCR result. RESULTS: The roller trim method emerged as the optimal method with the best PCR results, DNA concentration and cost efficiency, while the buffer-based methods were the least labour intensive but produced mediocre PCR results and DNA concentrations. Additionally, the Kingfisher magnetic bead extractions generally ranked higher in all categories over the Qiacube column-based DNA extractions. Ultimately, the ideal DNA extraction method for a particular study is influenced by logistical constraints in the field such as the size of the roller, the availability of cold storage, and time constraints on the project. Our results demonstrate the strengths and weaknesses of each approach, allowing for informed decision making by researchers.


Assuntos
DNA Ambiental , Animais , Cães , DNA/genética , Reação em Cadeia da Polimerase , Água , Técnicas de Amplificação de Ácido Nucleico
7.
Ecol Evol ; 13(10): e10598, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37818246

RESUMO

The use of anthropogenic resources is becoming increasingly common as species adapt to human-induced environmental changes, but their use can expose species to new risks. Understanding how animals exploit these resources is important for guiding conservation management, particularly where species are threatened. The introduction of canola cropping to breeding areas of endangered Carnaby's cockatoo (Zanda latirostris) has been attributed to an increase in the birds' reproductive success; however, the seed may be protein-limiting for nestling growth and its use by cockatoos has been implicated in the emergence of a new disease. We used high-resolution accelerometer-capable GPS tags to track eight birds. Accelerometer data were used to calculate overall dynamic body acceleration (ODBA), a proxy for energy expenditure, and to identify and quantify canola and native vegetation foraging behaviours. We used linear mixed models to determine which factors affected patterns of resource use and to determine whether, and to what extent, canola use was associated with reduced energetic and movement costs. We then compared the energetic content of canola seed and native food sources to inform patterns of behaviour and habitat use revealed by our tracking data. Use of canola was associated with reduced movement costs and energy expenditure. However, there was an apparent reluctance to increase foraging on canola above a threshold of time, even when conditions reduced time available to utilise native food sources. While anthropogenic resources may appear to improve population trends in some cases, careful investigations of patterns of resource use are necessary to guide appropriate conservation management efforts. For Carnaby's cockatoos, conservation efforts should focus on retention, protection and expansion of native food sources.

8.
J Exp Biol ; 215(Pt 16): 2806-13, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22837452

RESUMO

We examine here evaporative water loss, economy and partitioning at ambient temperatures from 14 to 33°C for the monito del monte (Dromiciops gliroides), a microbiotheriid marsupial found only in temperate rainforests of Chile. The monito's standard evaporative water loss (2.58 mg g(-1) h(-1) at 30°C) was typical for a marsupial of its body mass and phylogenetic position. Evaporative water loss was independent of air temperature below thermoneutrality, but enhanced evaporative water loss and hyperthermia were the primary thermal responses above the thermoneutral zone. Non-invasive partitioning of total evaporative water loss indicated that respiratory loss accounted for 59-77% of the total, with no change in respiratory loss with ambient temperature, but a small change in cutaneous loss below thermoneutrality and an increase in cutaneous loss in and above thermoneutrality. Relative water economy (metabolic water production/evaporative water loss) increased at low ambient temperatures, with a point of relative water economy of 15.4°C. Thermolability had little effect on relative water economy, but conferred substantial energy savings at low ambient temperatures. Torpor reduced total evaporative water loss to as little as 21% of normothermic values, but relative water economy during torpor was poor even at low ambient temperatures because of the relatively greater reduction in metabolic water production than in evaporative water loss. The poor water economy of the monito during torpor suggests that negative water balance may explain why hibernators periodically arouse to normothermia, to obtain water by drinking or via an improved water economy.


Assuntos
Marsupiais/fisiologia , Perda Insensível de Água/fisiologia , Água/metabolismo , Animais , Temperatura Corporal/fisiologia , Metabolismo Energético/fisiologia , Feminino , Masculino , Consumo de Oxigênio/fisiologia , Respiração
9.
Comp Biochem Physiol A Mol Integr Physiol ; 163(3-4): 336-42, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22871479

RESUMO

We examine here the thermal physiology of the ash-grey mouse, as there is a paucity of data to explain how Australian rodents meet thermoregulatory demands. Most ash-grey mice remained normothermic over a range of ambient temperatures (10 °C to 30 °C), although they became hyperthermic at high ambient temperatures. One individual entered torpor at ambient temperatures of 20 °C and 25 °C, with minimal body temperatures of 24.5 °C and 28.4 °C respectively, before spontaneously arousing. This is the first evidence of torpor use by an Australian murine rodent. Our data suggest that although ash-grey mice have the physiological ability to use torpor, it is used rarely, presumably due to other behavioural and physiological adaptations. Their higher-than-expected basal metabolic rate (1.56±0.25 mL O(2)g(-1) h(-1)) indicates that ash-grey mice do not have a frugal approach to energy expenditure. Other standard physiological variables were typical of a generalised rodent. A readily-available omnivorous diet, nocturnal activity, semi-fossorial habit and social behaviour presumably allow a high energy lifestyle. A reluctance to use torpor, despite an apparent physiological ability to do so, supports the idea that the use of torpor reflects a net balance between the costs and benefits of a heterothermic thermoregulatory strategy.


Assuntos
Regulação da Temperatura Corporal , Murinae/fisiologia , Animais , Metabolismo Basal , Feminino , Masculino , Murinae/metabolismo , Consumo de Oxigênio , Filogenia , Austrália Ocidental
10.
Conserv Physiol ; 10(1): coac010, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35492422

RESUMO

Conradie et al. (2020) recently modelled the vulnerability of Australian arid birds to a changing climate. While the approach used by Conradie et al. (2020) is valuable, we argue that key assumptions in their study are poorly supported and the risks of a changing climate to arid zone avifauna are consequently overstated.

11.
Front Physiol ; 12: 661670, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33986695

RESUMO

Human-induced climate change is increasing the frequency, duration, and intensity of heat waves and exposure to these extreme temperatures impacts individual physiology and performance (e.g., metabolism, water balance, and growth). These traits may be susceptible to thermal conditions experienced during embryonic development, but experiments focusing on post-natal development are scant. Documented effects of heat waves on whole-body metabolism may reflect changes in mitochondrial function, but most studies do not measure physiological traits at both the cellular and whole organism levels. Here, we exposed nests of zebra finches to experimentally simulated heat waves for 18 days after hatching and measured body mass, growth rate, whole-body metabolic rate, body temperature, wet thermal conductance, evaporative water loss, and relative water economy of chicks at three ages corresponding to ectothermic (day 5), poikilothermic (day 12), and homoeothermic (day 50) stages. Additionally, we measured mitochondrial bioenergetics of blood cells 80 days post-hatch. While early-life exposure to heat wave conditions did not impact whole body metabolic and hygric physiology, body temperature was lower for birds from heated compared with control nests at both 12 and 50 days of age. There was also an effect of nest heating at the cellular level, with mitochondria from heated birds having higher endogenous and proton-leak related respiration, although oxidative phosphorylation, maximum respiratory capacity, and coupling efficiency were not impacted. Our results suggest that early-life exposure to high ambient temperature induces programming effects on cellular-level and thermal physiology that may not be apparent for whole-animal metabolism.

12.
Prog Mol Subcell Biol ; 49: 1-23, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20069402

RESUMO

An extended period of inactivity and reduced metabolic rate of many animals and plants, as well as unicellular organisms, has long been recognized by natural historians, e.g., Aristotle and Pliny. Biologists have studied this phenomenon since the 1550s (Gessner) and 1700s (Van Leeuwenhoek, Buffon). The period of inactivity can be less than a day, a few consecutive days or weeks, an entire season, or even many years. It can involve very different physiological states in response to a variety of environmental stimuli, such as extreme temperatures or unavailability of food or water. These periods of inactivity have been described and classified according to the group of organisms in question, extent and duration of the metabolic depression, ambient and body temperatures, state of body water (frozen or hyperosmotic), or availability of oxygen. Cryptobiosis, or "hidden life," is an extreme form of inactivity, with often complete cessation of metabolism. It was first described in the 1700s, was further characterized in the 1800s, and in the 1900s physiological studies delineated the extent of metabolic depression. Molecular mechanisms for cryptobiosis have been sought since the late 1900s. Cryptobiosis includes three physiological states, anhydrobiosis (desiccation), osmobiosis (high osmotic concentration), and cryobiosis (freezing), where metabolic depression is associated with an altered physical state of cell water and often involves accumulation of compatible solutes, and one physiological state, anoxybiosis (anoxia), where metabolic depression occurs at the normal cellular hydration state. Dormancy (torpor) is a less extreme form of inactivity, associated with a moderate reduction in metabolic rate (hypometabolism). Although first described by Aristotle and Pliny, studies in the 1900s delineated the basic physiological changes that accompany dormancy. Dormancy allows avoidance of unfavorable short- or long-term climatic conditions and conservation of energy and water. Hibernation is long-term multiday torpor during winter, whereas aestivation is dormancy during summer. In ectotherms, the metabolic depression that accompanies dormancy is intrinsic, with metabolic rate declining to about 10 to 20% of resting metabolic rate at the same body temperature. The molecular mechanisms for intrinsic metabolic depression are poorly understood. In endotherms, torpor involves a fundamental physiological change in body temperature regulation that markedly reduces metabolic rate and water loss, often to <10% of the normothermic resting metabolic rate at the same ambient temperature. Most of this reduction in metabolic rate reflects the decreased setpoint for thermoregulation resulting in reduced metabolic heat production and a Q(10) effect; there may be some intrinsic molecular-based metabolic depression in some hibernators. Dormancy allows species to exploit ephemeral environments and colonise habitats that would otherwise be unsuitable for growth or survival at certain times of the year. There are costs to dormancy, but for many species, the energetic and hygric advantages outweigh these costs.


Assuntos
Estivação/fisiologia , Animais , Regulação da Temperatura Corporal/fisiologia , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , História Antiga
13.
Artigo em Inglês | MEDLINE | ID: mdl-19285566

RESUMO

We present here the first physiological data for the sandhill dunnart (Sminthopsis psammophila), the second largest (35-44 g) sminthopsine dasyurid marsupial, and report torpor for this species. Their thermoneutral body temperature (34.4 degrees C), thermolability below thermoneutrality (0.062 degrees C degrees C(-1)), and mild hyperthermia above thermoneutrality (35.5 degrees C) are typical of small dunnarts, and dasyurids. Basal metabolic rate (0.80 mL O2 g(-1) h(-1)) is as predicted from mass. Sandhill dunnarts generally conform to the Scholander-Irving model of endothermy, although metabolism increases less than expected and extrapolates to a higher than actual body temperature.Wet (0.22 mL O2 g(-1) h(-1) C(-1)) and dry (2.8 J g(-1) h(-1) degrees C(-1)) thermal conductances were as predicted. Thermoneutral evaporative water loss (1.6 mg g(-1) h(-1)) was only 54% of expected, but this is not significantly different, and more likely reflects variability in the marsupial dataset than an adaptation.Relative water economy resembles that of other small marsupials, rodents and birds, with a point of relative economy of 18 degrees C. Respiratory ventilation closely matches metabolic rate, with minute volume increased at low ambient temperatures by increased breathing rate rather than tidal volume; oxygen extraction was constant at about 17%, except during hyperthermia above the thermoneutrality. Torpor conferred significant energetic and hygric benefits. We found no evidence of deviation from allometrically- and phylogenetically-based expectations despite the sandhill dunnart's arid habitat and large (for a dunnart) body mass.


Assuntos
Marsupiais/fisiologia , Temperatura , Animais , Feminino , Masculino , Marsupiais/metabolismo , Especificidade da Espécie
14.
Conserv Physiol ; 6(1): coy057, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30323932

RESUMO

Although wildfires are increasing globally, available information on how mammals respond behaviourally and physiologically to fires is scant. Despite a large number of ecological studies, often examining animal diversity and abundance before and after fires, the reasons as to why some species perform better than others remain obscure. We examine how especially small mammals, which generally have high rates of energy expenditure and food requirements, deal with fires and post-fire conditions. We evaluate whether mammalian torpor, characterised by substantial reductions in body temperature, metabolic rate and water loss, plays a functional role in survival of mammals impacted by fires. Importantly, torpor permits small mammals to reduce their activity and foraging, and to survive on limited food. Torpid small mammals (marsupials and bats) can respond to smoke and arouse from torpor, which provides them with the possibility to evade direct exposure to fire, although their response is often slowed when ambient temperature is low. Post-fire conditions increase expression of torpor with a concomitant decrease in activity for free-ranging echidnas and small forest-dwelling marsupials, in response to reduced cover and reduced availability of terrestrial insects. Presence of charcoal and ash increases torpor use by captive small marsupials beyond food restriction alone, likely in anticipation of detrimental post-fire conditions. Interestingly, although volant bats use torpor on every day after fires, they respond by decreasing torpor duration, and increasing activity, perhaps because of the decrease in clutter and increase in foraging opportunities due to an increase in aerial insects. Our summary shows that torpor is an important tool for post-fire survival and, although the physiological and behavioural responses of small mammals to fire are complex, they seem to reflect energetic requirements and mode of foraging. We make recommendations on the conditions during management burns that are least likely to impact heterothermic mammals.

15.
Conserv Physiol ; 6(1): coy042, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30135736

RESUMO

Identifying spatial patterns in the variation of physiological traits that occur within and between species is a fundamental goal of comparative physiology. There has been a focus on identifying and explaining this variation at broad taxonomic scales, but more recently attention has shifted to examining patterns of intra-specific physiological variation. Here we examine geographic variation in the physiology of brushtail possums (Trichosurus), widely distributed Australian marsupials, and discuss how pertinent intra-specific variation may be to conservation physiology. We found significant geographical patterns in metabolism, body temperature, evaporative water loss and relative water economy. These patterns suggest that possums from warmer, drier habitats have more frugal energy and water use and increased capacity for heat loss at high ambient temperatures. Our results are consistent with environmental correlates for broad-scale macro-physiological studies, and most intra-generic and intra-specific studies of marsupials and other mammals. Most translocations of brushtail possums occur into Australia's arid zone, where the distribution and abundance of possums and other native mammals have declined since European settlement, leading to reintroduction programmes aiming to re-establish functional mammal communities. We suggest that the sub-species T. vulpecula hypoleucus from Western Australia would be the most physiologically appropriate for translocation to these arid habitats, having physiological traits most favourable for the extreme Ta, low and variable water availability and low productivity that characterize arid environments. Our findings demonstrate that geographically widespread populations can differ physiologically, and as a consequence some populations are more suitable for translocation to particular habitats than others. Consideration of these differences will likely improve the success and welfare outcomes of translocation, reintroduction and management programmes.

16.
Temperature (Austin) ; 3(3): 484-498, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28349088

RESUMO

Marsupials have relatively low body temperatures and metabolic rates, and are therefore considered to be maladapted for life in cold habitats such as alpine environments. We compared body temperature, energetics and water loss as a function of ambient temperature for 4 Antechinus species, 2 from alpine habitats and 2 from low altitude habitats. Our results show that body temperature, metabolic rate, evaporative water loss, thermal conductance and relative water economy are markedly influenced by ambient temperature for each species, as expected for endothermic mammals. However, despite some species and individual differences, habitat (alpine vs non-alpine) does not affect any of these physiological variables, which are consistent with those for other marsupials. Our study suggests that at least under the environmental conditions experienced on the Australian continent, life in an alpine habitat does not require major physiological adjustments by small marsupials and that they are physiologically equipped to deal with sub-zero temperatures and winter snow cover.

17.
Curr Zool ; 62(1): 53-59, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29491891

RESUMO

Predator odors can elicit fear responses in prey and predator odor recognition is generally associated with physiological responses. Prey species are often more likely to respond to the odor of familiar rather than alien predators. However, predator naïvety in an introduced prey species has rarely been investigated. We examined the physiological response, as shown by changes in ventilatory variables, of an introduced terrestrial herbivore, the European rabbit Oryctolagus cuniculus, in Australia, to the odor of potential predators and to control odors (distilled water and horse), to explore if responses were limited to historical (cat and fox) predators, or extended to historically novel predators (snake and quoll). All odors except distilled water elicited a response, with rabbits showing long-term higher respiratory frequencies and lower tidal volumes after introduction of the odors, indicating an increase in alertness. However, the intensity of the rabbits' reaction could not be directly linked to any pattern of response with respect to the history of predator-prey relationships. Rabbits exhibited significantly stronger reactions in response to both cat and quoll odors than they did to distilled water, but responses to horse, fox, and snake odor were similar to that of water. Our results show that the introduced rabbit can respond to both historical and novel predators in Australia, and suggest that shared evolutionary history is not necessarily a prerequisite to predator odor recognition.

18.
Compr Physiol ; 2(3): 2151-202, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23723035

RESUMO

Temperature profoundly influences physiological responses in animals, primarily due to the effects on biochemical reaction rates. Since physiological responses are often exemplified by their rate dependency (e.g., rate of blood flow, rate of metabolism, rate of heat production, and rate of ion pumping), the study of temperature adaptations has a long history in comparative and evolutionary physiology. Animals may either defend a fairly constant temperature by recruiting biochemical mechanisms of heat production and utilizing physiological responses geared toward modifying heat loss and heat gain from the environment, or utilize biochemical modifications to allow for physiological adjustments to temperature. Biochemical adaptations to temperature involve alterations in protein structure that compromise the effects of increased temperatures on improving catalytic enzyme function with the detrimental influences of higher temperature on protein stability. Temperature has acted to shape the responses of animal proteins in manners that generally preserve turnover rates at animals' normal, or optimal, body temperatures. Physiological responses to cold and warmth differ depending on whether animals maintain elevated body temperatures (endothermic) or exhibit minimal internal heat production (ectothermic). In both cases, however, these mechanisms involve regulated neural and hormonal over heat flow to the body or heat flow within the body. Examples of biochemical responses to temperature in endotherms involve metabolic uncoupling mechanisms that decrease metabolic efficiency with the outcome of producing heat, whereas ectothermic adaptations to temperature are best exemplified by the numerous mechanisms that allow for the tolerance or avoidance of ice crystal formation at temperatures below 0°C.


Assuntos
Adaptação Fisiológica , Regulação da Temperatura Corporal/fisiologia , Temperatura , Animais , Regulação da Temperatura Corporal/genética , Evolução Molecular , Humanos
19.
Physiol Biochem Zool ; 84(5): 514-21, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21897088

RESUMO

Physiological studies often involve the repeated measurement of individuals over a range of ordered categorical conditions, for example, varying ambient temperature. We illustrate here the use of a priori contrasts for multivariate repeated-measures ANOVA by analyzing the thermal responses of various physiological variables for a small marsupial, the dibbler (Parantechinus apicalis). Our analyses showed that dibblers conform closely to the Scholander-Irving model of endothermy. Body temperature was constant at low air temperatures, was 36.3 ± 0.24°C at thermoneutrality (30°C), and increased at 35°C. Metabolic rate decreased with increasing ambient temperature to a basal rate of 0.619 ± 0.036 mL O(2) g(-1) h(-1) at 30°C; it extrapolated closely to thermoneutral body temperature. Increased oxygen demand at lower ambient temperature was met by increased respiratory minute volume, achieved by increased respiratory frequency and tidal volume; oxygen extraction was constant at about 19%. Evaporative water loss and wet and dry thermal conductance increased markedly at high ambient temperatures but not sufficiently to maintain constant body temperature. Relative water economy was similar to that of other small marsupials, increasing linearly at lower air temperatures with a point of relative water economy of 20.3°C. We conclude that a priori contrasts provide a statistically appropriate and powerful analysis that can be used routinely to statistically describe the pattern of response of physiological variables to a categorical factor and are especially useful for repeated-measures ANOVA designs common to many physiological studies.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Marsupiais/fisiologia , Animais , Metabolismo Basal/fisiologia , Dióxido de Carbono/metabolismo , Interpretação Estatística de Dados , Feminino , Masculino , Modelos Biológicos , Análise Multivariada , Consumo de Oxigênio/fisiologia , Temperatura , Austrália Ocidental
20.
J Comp Physiol B ; 181(5): 657-65, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21259062

RESUMO

Duration and start time of respirometry experiments have significant effects on the measurement of basal values for several commonly measured physiological variables (metabolic rate, evaporative water loss and body temperature). A longer measurement duration reduced values for all variables for all start times, and this was an effect of reduced animal activity rather than random sampling. However, there was also an effect of circadian rhythm on the timing of minimal physiological values. Experiment start time had a significant effect on time taken to reach minimal values for all variables, ranging from 0400 hours ± 38 min (body temperature, start time 2300 hours) to 0854 hours ± 52 min (evaporative water loss, start time 1700 hours). It also influenced the time of day that minimal values were obtained, ranging from 2224 hours ± 40 min (carbon dioxide production, start time 1500 hours) to 0600 hours ± 57 min (oxygen consumption, start time 2300 hours), and the minimum values measured. Consequently, both the measurement duration and the experiment start time should be considered in experimental design to account for both a handling and a circadian effect on the animal's physiology. We suggest that experiments to measure standard physiological variables for small diurnal birds should commence between 1700 and 2100 hours, and measurement duration should be at least 9 h.


Assuntos
Metabolismo Basal/fisiologia , Temperatura Corporal/fisiologia , Melopsittacus/fisiologia , Consumo de Oxigênio/fisiologia , Fisiologia Comparada/normas , Perda Insensível de Água/fisiologia , Animais , Dióxido de Carbono/metabolismo , Ritmo Circadiano/fisiologia , Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA