Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Radiother Oncol ; 191: 110068, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142935

RESUMO

BACKGROUND: Radiation therapy (RT) for locally advanced head and neck cancer (HNC) often exposes subcortical brain structures to radiation. We performed this study to assess region-specific brain volumetrics in a population of long term HNC survivors. METHODS AND MATERIALS: Forty HNC survivors were enrolled at a mean of 6.4 years from completion of RT. Patients underwent a research MRI protocol that included a 3D T1- weighted whole-brain scan on a 3 Tesla MRI scanner. Voxel based morphometry was performed using the Computational Anatomy Toolbox with the Neuromorphometrics atlas. Healthy controls from the Human Connectome Project were used as a comparison cohort. Study participants also completed a comprehensive neurocognitive assessment. RESULTS: The final study cohort consisted of 38 participants after excluding 2 participants due to image quality. HNC survivors displayed widespread reduction in gray matter (GM) brain region volumes that included bilateral medial frontal cortex, temporal lobe, hippocampus, supplemental motor area, and cerebellum. Greater radiation exposure was associated with reduced GM volume in the left ventral diencephalon (r = -0.512, p = 0.003). Associations between cognition and regional GM volumes were identified for motor coordination and bilateral cerebellum (left, r = 0.444, p = 0.009; right, r = 0.372, p = 0.030), confrontation naming and left amygdala (r = 0.382, p = 0.026), verbal memory and bilateral thalamus (left, r = 0.435, p = 0.010; right, r = 0.424, p = 0.012), right amygdala (r = 0.339, p = 0.050), and right putamen (r = 0.364, p = 0.034). CONCLUSIONS: Reductions in GM were observed within this cohort of primarily non-nasopharyngeal HNC survivors as compared to a control sample. GM volumes were associated with performance in multiple cognitive domains. Results of this exploratory study support the need for investigation of anatomic brain changes as an important translational corollary to cognitive problems among HNC survivors.


Assuntos
Encéfalo , Neoplasias de Cabeça e Pescoço , Humanos , Encéfalo/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Córtex Cerebral , Imageamento por Ressonância Magnética/métodos , Sobreviventes , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia
2.
J Neurosurg ; : 1-8, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669700

RESUMO

OBJECTIVE: Radiation therapy (RT) is used selectively for patients with low-grade glioma (LGG) given the concerns for potential cognitive effects in survivors, but prior cognitive outcome studies among LGG survivors have had inconsistent findings. Translational studies that characterize changes in brain anatomy and physiology after treatment of LGG may help to both contextualize cognitive findings and improve the overall understanding of radiation effects in normal brain tissue. This study aimed to investigate the hypothesis that patients with LGG who are treated with RT will experience greater brain volume loss than those who do not receive RT. METHODS: This retrospective longitudinal study included all patients with WHO grade 2 glioma who received posttreatment surveillance MRI at the University of Alabama at Birmingham. Volumetric analysis of contralateral cortical white matter (WM), cortical gray matter (GM), and hippocampus was performed on all posttreatment T1-weighted MRI sequences using the SynthSeg script. The effect of clinical and treatment variables on brain volumes was assessed using two-level hierarchical linear models. RESULTS: The final study cohort consisted of 105 patients with 1974 time points analyzed. The median length of imaging follow-up was 4.6 years (range 0.36-18.9 years), and the median number of time points analyzed per patient was 12 (range 2-40). Resection was performed in 79 (75.2%) patients, RT was administered to 61 (58.1%) patients, and chemotherapy was administered to 66 (62.9%) patients. Age at diagnosis (ß = -0.06, p < 0.001) and use of RT (ß = -1.12, p = 0.002) were associated with the slope of the contralateral cortical GM volume model (i.e., change in GM over time). Age at diagnosis (ß = -0.08, p < 0.001), midline involvement (ß = 1.31, p = 0.006), and use of RT (ß = -1.45, p = 0.001) were associated with slope of the contralateral cortical WM volume model. Age (ß = -0.0027, p = 0.001), tumor resection (ß = -0.069, p < 0.001), use of chemotherapy (ß = -0.0597, p = 0.003), and use of RT (ß = -0.0589, p < 0.001) were associated with the slope of the contralateral hippocampus volume model. CONCLUSIONS: This study demonstrated volume loss in contralateral brain structures among LGG survivors, and patients who received RT experienced greater volume loss than those who did not. The results of this study may help to provide context for cognitive outcome research in LGG survivors and inform the design of future strategies to preserve cognition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA