RESUMO
We report the successful synthesis of an injectable dendrimer hydrogel (DH) carrying melphalan, a clinical drug for retinoblastoma treatment, in both conjugated and free forms. Polyamidoamine (PAMAM) dendrimer generation 5 (G5) is surface-modified with an acid-sensitive acetal-dibenzocyclooctyne linker and then undergoes azide-alkyne cycloaddition with melphalan-PEG-N3 conjugate to form G5-acetal-melphalan. During the DH gelation between G5-acetal-melphalan and PEG-diacrylate, free melphalan is added, resulting in a hydrogel (G5-acetal-melphalan-DH/melphalan) that carries the drug in both conjugated and free forms. Melphalan is slowly released from G5-acetal-melphalan-DH/melphalan, with the conjugated melphalan released more quickly at pH 5.3 due to acid-triggered acetal bond cleavage. The formulation's in vitro safety and efficacy were established on human corneal epithelia (HCE-2) and retinoblastoma cells (Y79). In an in vivo Y79 tumor xenograft model of retinoblastoma, intratumorally injected G5-melphalan-DH formulation prolonged tumor suppression. This injectable, multimodal, pH-responsive formulation shows promise for intravitreal injection to treat retinoblastoma.
Assuntos
Dendrímeros , Hidrogéis , Melfalan , Retinoblastoma , Dendrímeros/química , Melfalan/administração & dosagem , Melfalan/química , Melfalan/farmacologia , Retinoblastoma/tratamento farmacológico , Retinoblastoma/patologia , Animais , Humanos , Hidrogéis/química , Camundongos , Neoplasias da Retina/tratamento farmacológico , Neoplasias da Retina/patologia , Linhagem Celular Tumoral , Antineoplásicos Alquilantes/administração & dosagem , Antineoplásicos Alquilantes/química , Antineoplásicos Alquilantes/farmacologiaRESUMO
Drug repurposing uses approved drugs as candidate anticancer therapeutics, harnesses previous research and development efforts, and benefits from available clinically suitable formulations and evidence of patient tolerability. In this work, the drug used clinically to treat chronic alcoholism, disulfiram (DSF), was studied for its antitumor efficacy in a copper-dependent manner. The combination of DSF and copper could achieve a tumor cell growth inhibition effect comparable to those of 5-fluorouracil and taxol on head and neck cancer cells. Both bulk dendrimer hydrogel and microsized dendrimer hydrogel particles were utilized for the localized sustained release of copper in the tumor site. The localized sustained release of copper facilitated the tumor inhibition effect following intratumoral injection in a mouse's head and neck cancer model.
Assuntos
Cobre , Preparações de Ação Retardada , Dissulfiram , Neoplasias de Cabeça e Pescoço , Dissulfiram/farmacologia , Dissulfiram/química , Dissulfiram/administração & dosagem , Animais , Cobre/química , Cobre/farmacologia , Camundongos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos NusRESUMO
[Figure: see text].
Assuntos
Fosfatase Alcalina/sangue , Aterosclerose/metabolismo , Absorção Intestinal , Lipopolissacarídeos/sangue , Animais , Aterosclerose/etiologia , Aterosclerose/patologia , Antígenos CD36/metabolismo , Proteínas de Transporte/metabolismo , Colo/anatomia & histologia , Colo/metabolismo , Dieta Aterogênica/efeitos adversos , Proteínas de Transporte de Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas Ligadas por GPI/sangue , Humanos , Mucosa Intestinal , Metabolismo dos Lipídeos , Lipídeos/análise , Lipídeos/sangue , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Redução de PesoRESUMO
Low bioavailability of topically applied drugs remains a significant challenge for long-term glaucoma therapy. To enhance drug delivery efficiency, we developed dendrimer gel particles that collectively exhibit structural benefits of dendrimer, hydrogel, and particles, using the inverse emulsion method coupled with the highly efficient aza-Michael addition reaction (IEaMA). This hierarchical approach would maximize the utility of the structural features of existing ocular drug delivery systems. We have tested the delivery efficiency and efficacy of two first-line antiglaucoma drugs, brimonidine tartrate (BT) and timolol maleate (TM), which were loaded into dendrimer gel particles of various sizes, i.e., nDHP (nano-in-nano dendrimer hydrogel particles, ~200 nm), µDHP3 (3 µm), and µDHP10 (9 µm). We found that nDHP was superior to µDHP3 and µDHP10 in terms of cytocompatibility, degradability, drug release kinetics, and corneal permeability. The nDHPs increased drug corneal permeability by 17-fold compared to plain drug solution and enabled zero-order prolonged drug release kinetics. The nDHP-based formulation demonstrated pronounced IOP-lowering effects in both single-dose test and 7-day chronic daily dosing test in both Brown Norway rats and glaucoma mice. Taken together, we have developed nano-in-nano dendrimer gel particles for precise dosing and enabling sustained and synergistic efficacy of antiglaucoma drugs, which could be clinically impactful for improving glaucoma treatment.
RESUMO
We report on a heterogeneous dendrimer (G3-acetal-NH2) derivative possessing an acid-responsive charge-reversal layer. The synthesis of G3-acetal-NH2 starts with a polyamidoamine (PAMAM) dendrimer G3 core and follows the aza-Michael addition with N-(2-(1-(allyloxy)ethoxy)ethyl)acrylamide synthesized by us and the thiol-ene click chemistry with cysteamine hydrochloride in sequence. In a weakly acidic environment, the surface of this newly formed dendrimer can turn from amine-terminated to hydroxyl-terminated due to the cleavage of the acetal groups. This charge conversion from 34.3 ± 2.7 to 18.0 ± 0.3 mV in 24 h at pH 5.3 enables its capacity as a gene delivery vehicle. G3-acetal-NH2 with a positively charged surface can condense pMAX GFP plasmid at similar weight ratios as native G4-NH2 (above 2:1), allowing for its protected uptake into cells and endosomal escape. Meanwhile, in the endosome, the drop in vesicle pH cleaves the acetal bond, releasing the genetic payload and limiting its recondensation by the reduction in the dendrimer surface charge. When the vector/plasmid weight ratio was 2:1, G3-acetal-NH2 improved transfection of pMAX GFP plasmid by 5-fold over native G4-NH2 in NIH3T3 cells in terms of GFP protein expression. Taken together, we show that this surface charge conversion performance makes the synthesized heterogeneous dendrimer an improved vehicle for gene transfection.
Assuntos
Dendrímeros , Animais , Técnicas de Transferência de Genes , Camundongos , Células NIH 3T3 , PoliaminasRESUMO
In this study, the anticancer drug, camptothecin (CPT), was covalently grafted onto polyamidoamine (PAMAM) dendrimer surface and then reacted with polyethylene glycol diacrylate (PEG-DA) to form dendrimer hydrogel (DH-G3-CPT) with low cross-linking density. In this novel drug delivery system, CPT was cleaved from dendrimer via the ammonolysis of ester bonds and then diffused out of the hydrogel network, thus leading to significantly prolonged drug release. The self-cleaving release kinetics of camptothecin can be further tuned by pH. This DH-G3-CPT drug delivery system has both injectability and sustained drug release. It showed an excellent tumor inhibition effect following intratumoral injection in a head and neck cancer model of mouse.
Assuntos
Antineoplásicos Fitogênicos , Camptotecina , Dendrímeros , Liberação Controlada de Fármacos , Hidrogéis , Polietilenoglicóis , Animais , Humanos , Masculino , Camundongos , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/uso terapêutico , Camptotecina/administração & dosagem , Camptotecina/química , Camptotecina/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/uso terapêutico , Dendrímeros/química , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/patologia , Hidrogéis/química , Injeções , Camundongos Nus , Polietilenoglicóis/química , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Background: Dendrimers are an attractive alternative to viral vectors due to the low cost of production, larger genetic insert-carrying capacity, and added control over immune- and genotoxic complications through versatile functionalization. However, their transfection rates pale in comparison to their viral counterparts, resulting in widespread research efforts in the attempt to improve transfection efficiency. Materials and Methods: In this work, we designed a synthetic diblock nuclear-localization sequence peptide (NLS) (DDDDDDVKRKKKP) and complexed it with polyamidoamine (PAMAM) dendrimer G4 to form a duplex for gene delivery. We conducted transmission electron microscopy, gel mobility shift assay, and intracellular trafficking studies. We also assessed its transfection efficiency for the delivery of a green fluorescent protein-encoding plasmid (pGFP) to NIH3T3 cells. Results: PAMAM dendrimer G4, NLS, and plasmid DNA can form a stable three-part polyplex and gain enhanced entry into the nucleus. We found transfection efficiency, in large part, depends on the ratio of G4:NLS:plasmid. The triplex prepared at the ratio of 1:60:1 for G4:NLS:pGFP has been shown to be more significantly efficient in transfecting cells than the control group (G4/pGFP, 0.5:1). Conclusions: This new diblock NLS peptide can facilely complex with dendrimers to improve dendrimer-based gene transfection. It can also complex with other polycationic polymers to produce more potent nonviral duplex gene delivery vehicles.
RESUMO
There is a growing need for cartilage defect grafts that are structurally adaptable to possess multifaceted functions to promote bone regeneration, sustain medication efficacy, and preferably remain injectable but solidify quickly upon injection. In this work, we developed an injectable multicomponent biomimetic gel (MBG) by integrating polyamidoamine dendrimer G3 (G3), mesoporous silica nanoparticles (MSNs), and dendrimer-templated silver nanoparticles (G3-Ag) into a well-defined cross-linked network. MBGs composed of one particulate component (G3 alone), i.e., MBG-1, two particulate components (G3 and MSN-NH2), i.e., MBG-2, and three particulate components (G3, MSN-NH2, and G3-Ag), i.e., MBG-3, were prepared by inter-cross-linking dendrimeric and mesoporous silica nanoparticles with poly(ethylene glycol) diglycidyl ether (PEG-DGE, Mn = 2000 g/mol) via the facile amine-epoxy click reaction. The water-soluble antibiotic isoniazid was loaded to the cross-linked PEG network, whereas the hydrophobic antibiotic rifampicin was encapsulated into mesoporous MSNs. Our studies revealed that elasticity and mechanical strengths could be modulated and enhanced significantly with the inclusion of MSNs and silver nanoparticles. Isoniazid was released rapidly while rifampicin was released over an extended period of time. In addition, MBGs showed injectability, high swelling capacity, structural stability, and cytocompatibility. Taken together, MBGs have shown structural features that allow for the development of injectable gel grafts with the ability to promote cartilage defect repair and offer antibiotic medication benefits.
Assuntos
Antibacterianos/química , Dendrímeros/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Rifampina/química , Dióxido de Silício/química , Animais , Antibacterianos/farmacologia , Biomimética , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/instrumentação , Liberação Controlada de Fármacos , Elasticidade , Camundongos , Células NIH 3T3 , Polímeros/síntese química , Polímeros/química , Porosidade , Rifampina/farmacologiaRESUMO
The physiological barriers of the eye pose challenges to the delivery of the array of therapeutics for ocular diseases. Hydrogels have been widely explored for medical applications and introduce possible solutions to overcoming the medication challenges of the ocular environment. While the innovations in drug encapsulation and release mechanisms, biocompatibility, and treatment duration have become highly sophisticated, the challenge of widespread application of hydrogel formulations in the clinic is still apparent. This article reviews the latest hydrogel formulations and their associated chemistries for use in ocular therapies, spanning from external anterior to internal posterior regions of the eye in order to evaluate the state of recent research. This article discusses the utility of hydrogels in soft contact lens, wound dressings, intraocular lens, vitreous substitutes, vitreous drug release hydrogels, and cell-based therapies for regeneration. Additional focus is placed on the pre-formulation, formulation, and manufacturing considerations of the hydrogels based on individual components (polymer chains, linkers, and therapeutics), final hydrogel product, and required preparations for clinical/commercial applications, respectively.
Assuntos
Lentes de Contato Hidrofílicas , Sistemas de Liberação de Medicamentos , Oftalmopatias/tratamento farmacológico , Hidrogéis , Lentes Intraoculares , Composição de Medicamentos , Esterilização , Vitrectomia , CicatrizaçãoRESUMO
In this paper, we report on the fabrication of micron-sized dendrimer hydrogels (µDHs) using the water-in-oil (w/o) inverse microemulsion method coupled with the highly efficient aza-Michael addition. EDA core polyamidoamine (PAMAM) dendrimer G5 (10 w%) and polyethylene glycol diacrylate (PEG-DA, M n = 575 g/mol) (the molar ratio of amine/acrylate = 1/1) were dissolved in the water phase and added to hexane in the presence of surfactants span 80/tween 80 (5/1, w/w) (volume ratio of hexane to surfactants: 70:1) to form w/o microemulsions, in which PAMAM G5 cross-links with PEG-DA via the aza-Michael addition reaction. The resulting microgels are within 3-5 µm with relatively narrow size distribution. µDHs are pH-responsive degradable. They show good cytocompatibility and do not cause acute toxicity in vivo. Furthermore, they can realize a high loading of the hydrophobic drug CPT and enter the cells in the form of particles. The CPT and CPT/dendrimer complex can be slowly released following the zero-order release kinetics. Taken together, µDHs possessing hierarchically ordered dendrimers in micron domains represent a new class of microparticles with expanded structural features for programmable drug delivery and release.
RESUMO
In this work, we describe synthesis and characterization of novel in situ-forming polyamidoamine (PAMAM) dendrimer hydrogels (DHs) with tunable properties prepared via highly efficient aza-Michael addition reaction. PAMAM dendrimer G5 was chosen as the underlying core and functionalized with various degrees of acetylation using acetic anhydride. The nucleophilic amines on the dendrimer surface reacted with α, ß-unsaturated ester in acrylate groups of polyethylene glycol diacrylate (PEG-DA, Mn = 575 g/mol) via aza-Michael addition reaction to form dendrimer hydrogels without the use of any catalyst. The solidification time, rheological behavior, network structure, swelling, and degradation properties of the hydrogel were tuned by adjusting the dendrimer surface acetylation degree and dendrimer concentration. The DHs were shown to be highly cytocompatible and support cell adhesion and proliferation. We also prepared an injectable dendrimer hydrogel formulation to deliver the anticancer drug 5-fluorouracil (5-FU) and demonstrated that the injectable formulation efficiently inhibited tumor growth following intratumoral injection. Taken together, this new class of dendrimer hydrogel prepared by aza-Michael addition reaction can serve as a safe tunable platform for drug delivery and tissue engineering.
Assuntos
Hidrogéis/química , Dendrímeros , Poliaminas , Polietilenoglicóis , Engenharia TecidualRESUMO
We developed novel dendrimer hydrogels (DH)s on the basis of bioorthogonal chemistry, in which polyamidoamine (PAMAM) dendrimer generation 4.0 (G4) functionalized with strained alkyne dibenzocyclooctyne (DBCO) via PEG spacer (Mn = 2,000 g/mol) underwent strain-promoted azide-alkyne cycloaddition (SPAAC) with polyethylene glycol bisazide (PEG-BA) (Mn= 20,000 g/mol) to generate a dendrimer-PEG cross-linked network. This platform offers a high degree of functionality and modularity. A wide range of structural parameters including dendrimer generation, degree of PEGylation, loading density of clickable DBCO groups, PEG-BA chain length as well as the ratio of clickable dendrimer to PEG-BA and their concentrations can be readily manipulated to tune chemical and physical properties of DHs. We used this platform to prepare an injectable liquid DH. This bioorthogonal DH exhibited high cytocompatibility and enabled sustained release of the anticancer drug 5-fluorouracil (5-FU). Following intratumoral injection, the DH/5-FU formulation significantly suppressed tumor growth and improved survival of HN12 tumor-bearing mice by promoting tumor cell death as well as by reducing tumor cell proliferation and angiogenesis.
RESUMO
Quality assurance and quality control (QA/QC) procedures are vital to good biorepository management. The National Eye Institute (NEI) core CLIA-certified laboratory of the eyeGENE(®) Network receives blood from individuals with inherited eye conditions and isolates DNA for clinical genetic diagnostic testing and research. Clinical genetic test results are returned to the affected individuals, making it imperative that sample integrity is preserved throughout laboratory processing. A clinically validated, short tandem repeat (STR)-based approach, termed Sample Confirmation Testing (SCT), was developed to ensure that no significant laboratory errors occurred during processing. SCT uses modified protocols from commercial kits to create and compare STR profiles for each participant's original blood and derived DNA. This QA/QC procedure has been performed on 47% of the more than 6000 participants in the eyeGENE Biorepository and has identified significant laboratory errors in 0.4% of samples tested. SCT improves the quality of the data returned to affected individuals and the data distributed to researchers using eyeGENE samples by ensuring the integrity of the samples and aiding in curation of the biorepository. This approach serves as a model for other repositories to improve sample quality and management procedures.