Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35165193

RESUMO

Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world's rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals.


Assuntos
Rios/química , Poluição Química da Água/análise , Poluição Química da Água/prevenção & controle , Ecossistema , Exposição Ambiental , Monitoramento Ambiental , Humanos , Preparações Farmacêuticas , Águas Residuárias/análise , Águas Residuárias/química , Água/análise , Água/química , Poluentes Químicos da Água/análise
2.
Environ Sci Technol ; 57(4): 1721-1730, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36653019

RESUMO

There was no regulatory requirement for ecotoxicological testing of human pharmaceuticals authorized before 2006, and many of these have little or no data available to assess their environmental risk. Motivated by animal welfare considerations, we developed a decision tree to minimize in vivo fish testing for such legacy active pharmaceutical ingredients (APIs). The minimum no observed effect concentration (NOECmin, the lowest NOEC from chronic Daphnia and algal toxicity studies), the theoretical therapeutic water concentration (TWC, calculated using the fish plasma model), and the predicted environmental concentration (PEC) were used to derive API risk quotients (PEC/NOECmin and PEC/TWC). Based on a verification data set of 96 APIs, we show that by setting a threshold value of 0.001 for both risk quotients, the need for in vivo fish testing could potentially be reduced by around 35% without lowering the level of environmental protection. Hence, for most APIs, applying an assessment factor of 1000 (equivalent to the threshold of 0.001) to NOECmin substituted reliably for NOECfish, and TWC acted as an effective safety net for the others. In silico and in vitro data and mammalian toxicity data may further support the final decision on the need for fish testing.


Assuntos
Peixes , Preparações Farmacêuticas , Poluentes Químicos da Água , Animais , Daphnia , Ecotoxicologia , Monitoramento Ambiental , Medição de Risco , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
3.
Ecotoxicology ; 27(7): 936-944, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29500666

RESUMO

Products used for plant protection or as biocides often contain more than one active substance together with numerous formulation additives. The environmental risk assessment for such commercial mixtures applies as default the concept of concentration addition. There is remaining regulatory concern, however, that underestimation of risks can occur if components in the mixture interact synergistically, i.e., elicit effects greater than those predicted by concentration addition. While cases of true synergism appear to be rare, the combination of substances targeting different steps in the same biosynthesis pathway was pointed out as one potential case of synergistic interaction although mechanistic explanations are lacking. The present study aimed to verify this hypothesis using the green alga Raphidocelis subcapitata as the regulatory standard test organism for which such synergism had been indicated earlier. Algal growth inhibition tests were conducted with mixtures of ergosterol biosynthesis inhibitors (tebuconazole, fenpropidin, and fenpropimorph). The fungicides were first tested individually to derive reliable data for a mixture toxicity prediction. The here determined toxicity estimates for two of the fungicides were considerably lower than the endpoints in the regulatory dossiers, which had been used for earlier mixture toxicity predictions. Experimentally observed toxicity estimates for the mixtures deviated <2.6-fold from the predicted values. Hence, the hypothesis of synergistic interaction between fungicides targeting different enzymes in the ergosterol biosynthesis was clearly not confirmed for the green alga R. subcapitata. Overall, the present study demonstrates the importance of reliable and correct input data for mixture toxicity predictions in order to avoid erroneous conclusions on non-additive (synergistic) interactions.


Assuntos
Clorófitas/efeitos dos fármacos , Ergosterol/biossíntese , Fungicidas Industriais/toxicidade , Poluentes Químicos da Água/toxicidade , Sinergismo Farmacológico , Testes de Toxicidade
4.
Environ Sci Technol ; 51(1): 308-319, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27936620

RESUMO

A multidisciplinary concept has been developed to compare advanced wastewater treatment processes for their efficacy of eliminating micropollutants and pathogens. The concept is based on (i) the removal/formation of selected indicator substances and their transformation products (TPs), (ii) the assessment of ecotoxicity via in vitro tests, and (iii) the removal of pathogens and antibiotic resistant bacteria. It includes substances passing biological wastewater treatment plants regulated or proposed to be regulated in the European Water Framework Directive, TPs formed in biological processes or during ozonation, agonistic/antagonistic endocrine activities, mutagenic/genotoxic activities, cytotoxic activities, further activities like neurotoxicity as well as antibiotics resistance genes, and taxonomic gene markers for pathogens. At a pilot plant, ozonation of conventionally treated wastewater resulted in the removal of micropollutants and pathogens and the reduction of estrogenic effects, whereas the in vitro mutagenicity increased. Subsequent post-treatment of the ozonated water by granular activated carbon (GAC) significantly reduced the mutagenic effects as well as the concentrations of remaining micropollutants, whereas this was not the case for biofiltration. The results demonstrate the suitability of the evaluation concept to assess processes of advanced wastewater treatment including ozonation and GAC by considering chemical, ecotoxicological, and microbiological parameters.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias/química , Carvão Vegetal/química , Ecotoxicologia , Ozônio/química , Poluentes Químicos da Água
5.
Ecotoxicol Environ Saf ; 119: 90-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25985252

RESUMO

Mining activity is an important economic activity in several North Atlantic Treaty Organization (NATO) and North African countries. Within their territory derelict or active mining explorations represent risks to surrounding ecosystems, but engineered-based remediation processes are usually too expensive to be an option for the reclamation of these areas. A project funded by NATO was performed, with the aim of finding a more eco-friendly solution for reclamation of these areas. As part of an overall risk assessment, the risk of contaminated soils to selected soil organisms was evaluated. The main question addressed was: Does the metal-contaminated soils from a former iron mine located at Ait Amar (Morocco),which was abandoned in the mid-Sixties, affect the reproduction of enchytraeids (Enchytraeus bigeminus) and predatory mites (Hypoaspis aculeifer)? Soil samples were taken at 20 plots along four transects covering the mine area and at a reference site about 15km away from the mine. The soils were characterized pedologically and chemically, which showed a heterogeneous pattern of metal contamination (mainly cadmium, copper, and chromium, sometimes at concentrations higher than European soil trigger values). The reproduction of enchytraeids (Enchytraeus bigeminus) and predatory mites (Hypoaspis aculeifer) was studied using standard laboratory tests according to OECD guidelines 220 (2004) and 226 (2008). The number of juveniles of E. bigeminus was reduced at several plots with high concentrations of Cd or Cu (the latter in combination with low pH values). There was nearly no effect of the metal contaminated soils on the reproduction of H. aculeifer. The overall lack of toxicity at the majority of the studied plots is probably caused by the low availability of the metals in these soils unless soil pH was very low. Different exposure pathways are likely responsible for the different reaction of mites and enchytraeids (hard-bodied versus soft-bodied organisms). The results of this study can be used not only for assessing the risk of contaminated soils but also could play a role for the identification of soil remediation programs.


Assuntos
Poluição Ambiental/efeitos adversos , Metais Pesados/toxicidade , Ácaros/efeitos dos fármacos , Oligoquetos/efeitos dos fármacos , Poluentes do Solo/toxicidade , Solo/química , Animais , Ecossistema , Monitoramento Ambiental , Ferro/toxicidade , Mineração , Marrocos , Reprodução/efeitos dos fármacos , Medição de Risco
6.
Appl Environ Microbiol ; 79(7): 2435-45, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23377948

RESUMO

The detection and abundance of Escherichia coli in water is used to monitor and mandate the quality of drinking and recreational water. Distinguishing commensal waterborne E. coli isolates from those that cause diarrhea or extraintestinal disease in humans is important for quantifying human health risk. A DNA microarray was used to evaluate the distribution of virulence genes in 148 E. coli environmental isolates from a watershed in eastern Ontario, Canada, and in eight clinical isolates. Their pathogenic potential was evaluated with Caenorhabditis elegans, and the concordance between the bioassay result and the pathotype deduced by genotyping was explored. Isolates identified as potentially pathogenic on the basis of their complement of virulence genes were significantly more likely to be pathogenic to C. elegans than those determined to be potentially nonpathogenic. A number of isolates that were identified as nonpathogenic on the basis of genotyping were pathogenic in the infection assay, suggesting that genotyping did not capture all potentially pathogenic types. The detection of the adhesin-encoding genes sfaD, focA, and focG, which encode adhesins; of iroN2, which encodes a siderophore receptor; of pic, which encodes an autotransporter protein; and of b1432, which encodes a putative transposase, was significantly associated with pathogenicity in the infection assay. Overall, E. coli isolates predicted to be pathogenic on the basis of genotyping were indeed so in the C. elegans infection assay. Furthermore, the detection of C. elegans-infective environmental isolates predicted to be nonpathogenic on the basis of genotyping suggests that there are hitherto-unrecognized virulence factors or combinations thereof that are important in the establishment of infection.


Assuntos
Caenorhabditis elegans/microbiologia , Microbiologia Ambiental , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/mortalidade , Escherichia coli/isolamento & purificação , Escherichia coli/patogenicidade , Animais , Escherichia coli/genética , Genótipo , Humanos , Análise em Microsséries , Modelos Animais , Análise de Sequência com Séries de Oligonucleotídeos , Ontário , Análise de Sobrevida , Fatores de Virulência/genética
7.
Environ Toxicol Chem ; 41(3): 601-613, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33595135

RESUMO

The toxicity of 17 active pharmaceutical ingredients (APIs) was investigated using standardized acute and chronic tests with Daphnia magna and 2 algae species. Chronic toxicity was generally greater for Daphnia than for algae. Compilation of additional data resulted in 100 APIs for which the acute-to-chronic ratio (ACR) was determined for Daphnia. The frequency of high ACRs (~20% with ACRs > 100) indicates that specific receptor-mediated toxicity toward D. magna is rather common among APIs. The 11 APIs with ACRs > 1000 included lipid-modifying agents, immunosuppressants, antibiotics, antineoplastics, antiobesics, antivirals, and antihistamines. There was no consistent association between ACR and chronic toxicity, ionization status, or lipophilicity. High ACRs were not exclusively associated with the presence of orthologs of the pharmacological target in Daphnia. Statins, acetylcholinesterase inhibitors, and antihistamines are discussed in more detail regarding the link between targets and toxic mode of action. For acetylcholinesterase inhibitors, receptor-mediated toxicity was already apparent after acute exposure, whereas the high ACR and chronic toxicity of some antihistamines probably related to interaction with a secondary rather than the primary pharmacological target. Acute or modeled chronic toxicity estimates have often been used for prioritizing pharmaceuticals. This may be seriously misleading because chronic effects are currently not predictable for APIs with specific receptor-mediated toxicity. However, it is exactly these APIs that are the most relevant in terms of environmental risks. Environ Toxicol Chem 2022;41:601-613. © 2021 SETAC.


Assuntos
Organismos Aquáticos , Poluentes Químicos da Água , Acetilcolinesterase , Animais , Inibidores da Colinesterase/farmacologia , Daphnia , Preparações Farmacêuticas , Testes de Toxicidade Aguda , Poluentes Químicos da Água/toxicidade
8.
Sci Total Environ ; 808: 151931, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34863752

RESUMO

Sunscreens containing UV filters, such as octocrylene (OCR) and butyl-methoxydibenzoylmethane (BMDBM), have been increasingly used to protect human skin against UV radiation. Both substances have been detected in monitoring studies in the freshwater and marine environment, and there has been concern about potential effects on aquatic organisms. In the present work, the environmental fate and occurrence, bioaccumulation and ecotoxicity including endocrine effects of OCR and BMDBM are reviewed focusing on the aquatic environment. The two UV filters have low water solubilities and a high sorption potential. The available data indicate that OCR is poorly biodegradable. BMDBM lacks anaerobic and inherent biodegradability. However, it was biodegraded to variable degrees in simulation studies. Measured concentrations in the freshwater and marine environment were found to vary considerably between sites, depending on the extent of recreational activities or wastewater discharges. While the bioconcentration factor of OCR in fish is below the threshold value for bioaccumulation according to EU REACH, the available data for BMDBM do not allow a definitive conclusion on its bioaccumulation potential. Analysis of the aquatic toxicity data showed that data quality was often limited, e.g. in the case of effect concentrations substantially exceeding maximum achievable dissolved concentrations. Up to their limit of water solubility, OCR and BMDBM showed no toxicity to microorganisms, algae, and corals, and no acute toxicity to daphnids and fish. In chronic daphnid tests, OCR was highly toxic, whereas BMDBM lacked toxicity. Reliable water-sediment toxicity tests are required to further evaluate possible effects on benthic invertebrates. The available data do not provide evidence for endocrine effects of the two UV filters on fish. In order to assess potential environmental risks caused by OCR and BMDBM, a validated exposure model for estimating direct emission of UV filters into the aquatic environment and data from systematic, longer-term monitoring studies are needed.


Assuntos
Raios Ultravioleta , Poluentes Químicos da Água , Animais , Peixes , Água Doce , Protetores Solares/toxicidade , Testes de Toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
9.
Parasitology ; 138(1): 122-31, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20663250

RESUMO

Host-parasite interactions are shaped by the co-evolutionary arms race of parasite virulence, transmission success as well as host resistance and recovery. The virulence and fitness of parasites may depend on host condition, which is mediated, for instance, by host energy constraints. Here, we investigated to what extent stress imposed by predation threat and environmental pollutants influences host-parasite interactions. We challenged the crustacean host Daphnia magna with the sterilizing bacterial endoparasite Pasteuria ramosa and simultaneously exposed the host to fish kairomones, the pesticide carbaryl or both stressors. While parasite virulence, measured as impact on host mortality and sterilization, increased markedly after short-term pesticide exposure, it was not influenced by predation threat. Parasite fitness, measured in terms of produced transmission stages, decreased both in fish and pesticide treatments. This effect was much stronger under predation threat than carbaryl exposure, and was attributable to reduced somatic growth of the host, presumably resulting in fewer resources for parasite development. While the indirect impact of both stressors on spore loads provides evidence for host condition-dependent parasite fitness, the finding of increased virulence only under carbaryl exposure indicates a stronger physiological impact of the neurotoxic chemical compared with the effect of a non-toxic fish kairomone.


Assuntos
Daphnia/microbiologia , Daphnia/fisiologia , Pasteuria/fisiologia , Pasteuria/patogenicidade , Animais , Carbaril , Daphnia/crescimento & desenvolvimento , Aptidão Genética , Interações Hospedeiro-Parasita , Feromônios , Estresse Fisiológico , Virulência
10.
Ecotoxicology ; 20(3): 543-51, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21380529

RESUMO

Natural populations that are exposed to pesticides in their environment may at the same time be exposed to natural stressors like parasites and predators, which may interact with pesticide exposure. This may not only impact target pest species but also a wide variety of non-target species. This review reports on a joint research program in the water flea Daphnia magna, a non-target species often used as model organism in ecology and ecotoxicology. The focus is on different aspects that are of key importance to understand the evolutionary ecology of pesticide exposure: (1) the capacity of natural populations to genetically adapt to pesticide exposure (2) the added complexity of synergistic effects caused by simultaneous exposure to natural stressors, and (3) the potential interference of evolutionary costs of adaptation to pesticide exposure. Our results showed that natural populations were able to rapidly evolve resistance to the pesticide carbaryl but at the expense of fitness costs. Individuals selected for carbaryl resistance had higher survival rates when exposed to the pesticide but also a greater susceptibility to the challenge imposed by the bacterial endoparasite Pasteuria ramosa. The evolved resistance to carbaryl was in some cases only expressed in the absence of fish kairomones. Further, it became clear that the responses to both exposure to single and combined stressors was for several life history variables strongly dependent upon past exposure to carbaryl. This indicates that past exposures to pesticides are important and can not be neglected when evaluating responses to current stressors.


Assuntos
Carbaril/toxicidade , Daphnia/efeitos dos fármacos , Daphnia/genética , Praguicidas/toxicidade , Adaptação Fisiológica , Animais , Evolução Biológica , Daphnia/microbiologia , Daphnia/fisiologia , Resistência a Medicamentos , Feminino , Pasteuria/fisiologia , Seleção Genética
11.
Ecotoxicology ; 20(1): 234-45, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21086159

RESUMO

The effect of ivermectin on soil organisms was assessed in Terrestrial Model Ecosystems (TMEs). Intact soil cores were extracted from a pasture in England and kept for up to 14 weeks in the laboratory. Ivermectin was applied to the soil surface via spiked cow dung slurry at seven concentration rates ranging from 0.25 to 180 mg/TME, referring to concentrations of 0.19-227 mg ivermectin/kg soil dry weight in the uppermost (0-1 cm) soil layer. After 7, 28 and 96 days following the application soil cores were destructively sampled to determine ivermectin residues in soil and to assess possible effects on microbial biomass, nematodes, enchytraeids, earthworms, micro-arthropods, and bait-lamina feeding activity. No significant effect of ivermectin was found for microbial respiration and numbers of nematodes and mites. Due to a lack of dose-response patterns no effect concentrations could be determined for the endpoints enchytraeid and collembolan numbers as well as total earthworm biomass. In contrast, EC50 values for the endpoint feeding rate could be calculated as 0.46, 4.31 and 15.1 mg ivermectin/kg soil dry weight in three soil layers (0-1, 0-5 and 0-8 cm, respectively). The multivariate Principal Response Curve (PRC) was used to calculate the NOEC(community), based on earthworm, enchytraeid and collembolan abundance data, as 0.33 and 0.78 mg ivermectin/kg soil dw for day 7 and day 96, respectively. The results shown here are in line with laboratory data, indicating in general low to moderate effects of ivermectin on soil organisms. As shown by the results of the bait-lamina tests, semi-field methods such as TMEs are useful extensions of the battery of potential test methods since complex and ecologically relevant endpoints can be included.


Assuntos
Ecossistema , Invertebrados/efeitos dos fármacos , Ivermectina/análise , Poluentes do Solo/análise , Animais , Biomassa , Ivermectina/toxicidade , Ácaros/efeitos dos fármacos , Nematoides/efeitos dos fármacos , Densidade Demográfica , Medição de Risco , Microbiologia do Solo , Poluentes do Solo/toxicidade
12.
Sci Data ; 8(1): 136, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021166

RESUMO

Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change.


Assuntos
Biodiversidade , Oligoquetos/classificação , Animais , Biomassa
13.
J Anim Ecol ; 79(5): 1023-33, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20584096

RESUMO

1. Spatial patterns in parasite community structure are probably driven by the availability of infectious stages. This is because hosts become infected through picking up infectious stages from their environment. Several studies have, however, reported strong genotype by genotype interactions and parasite-mediated selection in hosts. This leads to the prediction of a parasite by host population interaction with respect to infection rates and intensities, which may also shape spatial patterns in parasite community structure. 2. Using the water flea Daphnia magna and its microparasites as a model, we carried out a laboratory experiment to test explicitly to what extent parasite community structure in host populations is determined by the availability of infectious stages in the sediment they are exposed to, and to what extent host population identity and location play a role. 3. We exposed 10 D. magna host populations each to sediment of their own habitat and sediment of the other nine habitats, and monitored the parasite community of the resulting experimental populations. 4. Sediment seems to be a strong determinant of parasite infection rates, while there was no overall effect of host population. Sympatric parasite and host population combinations did in most cases not result in significantly different infection rates than allopatric parasite and host combinations. Our results indicate that spore availability could be the key variable determining parasite community structure in natural Daphnia populations.


Assuntos
Bactérias/isolamento & purificação , Daphnia/microbiologia , Ecossistema , Animais , Demografia , Interações Hospedeiro-Parasita
14.
Aquat Toxicol ; 206: 91-101, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30468978

RESUMO

The interaction of pollutants and pathogens may result in altered and often enhanced effects of the chemical, the biotic stressor or both. These interaction effects cannot be reliably predicted from the toxicity of the chemical or the virulence of the pathogen alone. While standardized detection methods for immunotoxic effects of chemicals exist with regard to human health, employing host-resistance assays with vertebrates, such standardized test systems are completely lacking for invertebrate species and no guidance is available on how immunotoxic effects of a chemical in invertebrates could be definitively identified. In the present study, we investigated the impact of the immunosuppressive pharmaceutical cyclosporine A (CsA) on the invertebrate host-pathogen system Daphnia magna - Pasteuria ramosa. CsA is a calcineurin-inhibitor in vertebrates and also known to have antibiotic as well as antifungal properties. Juvenile D. magna were exposed to CsA for 21 days with or without additional pathogen challenge during the first 72 h of exposure. Long-term survival of the host D. magna was synergistically impacted by co-exposure to the chemical and the pathogen, expressed e.g. in significantly enhanced hazard ratios. Additionally, enhanced virulence of the pathogen upon chemical co-exposure was expressed in an increased proportion of infected hosts and an increased speed of Pasteuria-induced host sterilization. In contrast, effects on reproduction were additive in Pasteuria-challenged, but finally non-infected D. magna. The enhancing effects of CsA occurred at and below 3 µg/L, which was in the absence of the pathogen the lowest concentration significantly impacting the standard toxicity endpoint 'reproduction' in D. magna. Hence, the present study provides evidence that a pharmaceutical intended to suppress the human immune system can also suppress disease resistance of an aquatic invertebrate organism at otherwise non-toxic concentrations. Plausible ways of direct interactions of CsA with the host's immune system are discussed, e.g. interference with phagocytosis or Toll-like receptors. Experimental verification of such a direct interference would be warranted to support the strong evidence for immunotoxic activity of CsA in invertebrates. While it remains open whether CsA concentrations in the environment are high enough to trigger adverse effects in environmental organisms, our findings highlight the need to consider immunotoxicity in an environmental risk assessment, and to develop suitable standardized methods for this purpose.


Assuntos
Ciclosporina/toxicidade , Daphnia/efeitos dos fármacos , Daphnia/microbiologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Pasteuria/efeitos dos fármacos , Pasteuria/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/efeitos dos fármacos , Reprodução/efeitos dos fármacos
15.
Integr Environ Assess Manag ; 15(3): 470-481, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30638305

RESUMO

The persistence assessment under the European Union regulation Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) relies on compartment-specific degradation half-lives derived from laboratory simulation studies with surface water, aquatic sediment, or soil. Although these data are given priority, they are not available for most of the compounds. Therefore, according to the Integrated Assessment and Testing Strategy (ITS) for persistence assessment, results from ready biodegradability tests (RBTs) are used within a persistence screening to decide whether a substance is considered as "not persistent" or "potentially persistent." However, ready biodegradability is currently tested only in water. Consequently, there is a lack of approaches that include the soil and sediment compartments for persistence assessment at the screening level. In previous studies, compartment-specific screening tools for water-sediment (Water-Sediment Screening Tool [WSST]) and soil (Soil Screening Tool [SST]) were developed based on the existing test guideline Organisation for Economic Development and Co-operation (OECD TG 301C [MITI (Ministry of International Trade and Industry, Japan) test]). The test systems MITI, WSST, and SST were successfully applied to determine sound and reliable biodegradation data for 15 test compounds. In the present study, these results are used within the scope of a new alternative persistence screening approach, the Compartment-Specific Persistence Screening (CSPS). Compared to the persistence screening under REACH, the CSPS is a more conservative approach that provides additional reasonable results, particularly for compounds that sorb to sediment and soil, and for which the current standard persistence screening might be insufficient. Thus, the CSPS can be used to identify potentially persistent and nonpersistent compounds in the regulatory context by a comprehensive assessment that includes water, soil, and sediment. Moreover, experimentally determined half-lives from the compartment-specific screening tools can be used as input for multimedia models that estimate, for example, overall persistence (Pov ). The application of fixed half-life factors to extrapolate from water to soil and sediment, which is here demonstrated to be inappropriate, can thereby be avoided. Integr Environ Assess Manag 2019;00:000-000. © 2019 SETAC.


Assuntos
Biodegradação Ambiental , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Monitoramento Ambiental/instrumentação , União Europeia , Sedimentos Geológicos/análise
16.
Environ Toxicol Chem ; 38(11): 2509-2519, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31343770

RESUMO

The fish plasma model (FPM) predicts the fish blood plasma concentration of a pharmaceutical from the water concentration to which the fish is exposed and compares it with the human therapeutic plasma concentration (Hther PC) with the postulate that no adverse toxic effects occur below the Hther PC. The present study provides several lines of evidence supporting the FPM for the beta-adrenergic agonist salbutamol, a small cationic molecule at ambient pH. Salbutamol exhibited very low acute toxicity to early and adult life stages of fish. Biomass reduction in fish early life stages was the most sensitive apical endpoint, with no-observed-effect concentrations (NOECs) in the low mg/L range after continuous exposure for up to 120 d. Given that predicted and measured environmental concentrations are at least 1000-fold lower, the risk of salbutamol in freshwater is deemed very low. Increase in heart beat rate and decrease in total triglyceride content in fish also occurred at the low mg/L range and resembled effects known from humans. This finding supports the FPM assumption of conserved targets in fish with similar functionality. Plasma concentrations measured in adult and juvenile fish exposed to water concentrations at approximately the NOECs exceeded Hther PC and even approached plasma concentrations toxic to humans. This result confirms for salbutamol the FPM hypothesis that no adverse (i.e., population-relevant) toxic effects occur in fish below the Hther PC. Environ Toxicol Chem 2019;38:2509-2519. © 2019 SETAC.


Assuntos
Agonistas Adrenérgicos beta/sangue , Albuterol/sangue , Monitoramento Ambiental , Peixes/sangue , Modelos Biológicos , Agonistas Adrenérgicos beta/química , Albuterol/química , Animais , Biomassa , Frequência Cardíaca
17.
Environ Sci Eur ; 30(1): 3, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29392106

RESUMO

BACKGROUND: Biocidal products are mixtures of one or more active substances (a.s.) and a broad range of formulation additives. There is regulatory guidance currently under development that will specify how the combined effects of the a.s. and any relevant formulation additives shall be considered in the environmental risk assessment of biocidal products. The default option is a component-based approach (CBA) by which the toxicity of the product is predicted from the toxicity of 'relevant' components using concentration addition. Hence, unequivocal and practicable criteria are required for identifying the 'relevant' components to ensure protectiveness of the CBA, while avoiding unnecessary workload resulting from including by default components that do not significantly contribute to the product toxicity. The present study evaluated a set of different criteria for identifying 'relevant' components using confidential information on the composition of 21 wood preservative products. Theoretical approaches were complemented by experimentally testing the aquatic toxicity of seven selected products. RESULTS: For three of the seven tested products, the toxicity was underestimated for the most sensitive endpoint (green algae) by more than factor 2 if only the a.s. were considered in the CBA. This illustrated the necessity of including at least some additives along with the a.s. Considering additives that were deemed 'relevant' by the tentatively established criteria reduced the underestimation of toxicity for two of the three products. A lack of data for one specific additive was identified as the most likely reason for the remaining toxicity underestimation of the third product. In three other products, toxicity was overestimated by more than factor 2, while prediction and observation fitted well for the seventh product. Considering all additives in the prediction increased only the degree of overestimation. CONCLUSIONS: Supported by theoretical calculations and experimental verifications, the present study developed criteria for the identification of CBA-relevant components in a biocidal product. These criteria are based on existing criteria stated in the regulation for classification, labelling and packaging of substances. The CBA was found sufficiently protective and reliable for the tested products when applying the here recommended criteria. The lack of available aquatic toxicity data for some of the identified relevant components was the main reason for underestimation of product toxicity.

18.
Water Res ; 140: 56-66, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29684702

RESUMO

The aquatic environment is continually exposed to a complex mixture of chemicals, whereby effluents of wastewater treatment plants (WWTPs) are one key source. The aim of the present study was to investigate whether environmental risk assessments (ERAs) addressing individual substances are sufficiently protective for such coincidental mixtures. Based on a literature review of chemicals reported to occur in municipal WWTP effluents and mode-of-action considerations, four different types of mixtures were composed containing human pharmaceuticals, pesticides, and chemicals regulated under REACH. The experimentally determined chronic aquatic toxicity of these mixtures towards primary producers and the invertebrate Daphnia magna could be adequately predicted by the concept of concentration addition, with up to 5-fold overestimation and less than 3-fold underestimation of mixture toxicity. Effluents of a municipal WWTP had no impact on the predictability of mixture toxicity and showed no adverse effects on the test organisms. Predictive ERAs for the individual mixture components based on here derived predicted no effect concentrations (PNECs) and median measured concentrations in WWTP effluents (MCeff) indicated no unacceptable risk for any of the individual chemicals, while MCeff/PNEC summation indicated a possible risk for multi-component mixtures. However, a refined mixture assessment based on the sum of toxic units at species level indicated no unacceptable risks, and allowed for a safety margin of more than factor 10, not taking into account any dilution of WWTP effluents by surface waters. Individual substances, namely climbazole, fenofibric acid and fluoxetine, were dominating the risks of the investigated mixtures, while added risk due to the mixture was found to be low with the risk quotient being increased by less than factor 2. Yet, uncertainty remains regarding chronic mixture toxicity in fish, which was not included in the present study. The number and identity of substances composing environmental mixtures such as WWTP effluents is typically unknown. Therefore, a mixture assessment factor is discussed as an option for a prospective ERA of mixtures of unknown composition.


Assuntos
Testes de Toxicidade Crônica/métodos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Animais , Araceae/efeitos dos fármacos , Clorófitas/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Ecotoxicologia/métodos , Feminino , Fenofibrato/análogos & derivados , Fenofibrato/toxicidade , Fluoxetina/toxicidade , Imidazóis/toxicidade , Masculino , Praguicidas/análise , Praguicidas/toxicidade , Preparações Farmacêuticas/análise , Medição de Risco/métodos , Eliminação de Resíduos Líquidos
19.
Environ Toxicol Chem ; 37(3): 690-702, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29068498

RESUMO

A framework is presented that is intended to facilitate the evaluation of potential aquatic ecological risks resulting from discharges of down-the-drain chemicals. A scenario is presented using representatives of many of the types of chemicals that are treated domestically. Predicted environmental chemical concentrations are based on reported loading rates and routine removal rates for 3 types of treatment: trickling filter, activated sludge secondary treatment, and activated sludge plus advanced oxidation process as well as instream effluent dilution. In tier I, predicted effluent concentrations were compared with the lowest predicted-no-effect concentration (PNEC) obtained from the literature using safety factors as needed. A cumulative risk characterization ratio (cumRCR) < 1.0 indicates that risk is unlikely and no further action is needed. Otherwise, a tier 2 assessment is used, in which PNECs are based on trophic level. If tier 2 indicates a possible risk, then a retrospective assessment is recommended. In tier 1, the cumRCR was > 1.0 for all 3 treatment types in our scenario, even though no chemical exceeded a hazard quotient of 1.0 in activated sludge or advanced oxidation process. In tier 2, activated sludge yielded a lower cumRCR than trickling filter because of higher removal rates, and the cumRCR in the advanced oxidation process was << 1.0. Based on the maximum cumulative risk ratio (MCR), more than one-third of the predicted risk was accounted for by one chemical, and at least 90% was accounted for by 3 chemicals, indicating that few chemicals influenced the mixture risk in our scenario. We show how a retrospective assessment can test whether certain chemicals hypothesized as potential drivers in the prospective assessment could have, or are having, deleterious effects on aquatic life. Environ Toxicol Chem 2018;37:690-702. © 2017 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Medição de Risco/métodos , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade , Purificação da Água , Árvores de Decisões , Ecotoxicologia , Monitoramento Ambiental , Estudos Prospectivos , Estudos Retrospectivos , Esgotos/química , Poluentes Químicos da Água/análise
20.
Aquat Toxicol ; 186: 171-179, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28284153

RESUMO

Advanced wastewater treatment technologies are generally known to be an effective tool for reducing micropollutant discharge into the aquatic environment. Nevertheless, some processes such as ozonation result in stable transformation products with often unknown toxicity. In the present study, whole effluents originating from nine different steps of advanced treatment combinations were compared for their aquatic toxicity. Assessed endpoints were survival, growth and reproduction of Lumbriculus variegatus, Daphnia magna and Lemna minor chronically exposed in on-site flow-through tests based on standard guidelines. The treatment combinations were activated sludge treatment followed by ozonation with subsequent filtration by granular activated carbon or biofilters and membrane bioreactor treatment of raw wastewater followed by ozonation. Additionally, the impact of treated wastewater on the immune response of invertebrates was investigated by challenging D. magna with a bacterial endoparasite. Conventionally treated wastewater reduced reproduction of L. variegatus by up to 46%, but did not affect D. magna and L. minor with regard to survival, growth, reproduction and parasite resistance. Instead, parasite susceptibility was significantly reduced in D. magna exposed to conventionally treated as well as ozonated wastewater in comparison to D. magna exposed to the medium control. None of the three test organisms provided clear evidence that wastewater ozonation leads to increased aquatic toxicity. Rather than to the presence of toxic transformation products, the affected performance of L. variegatus could be linked to elevated concentrations of ammonium and nitrite that likely resulted from treatment failures.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Organismos Aquáticos/fisiologia , Parasitos/fisiologia , Águas Residuárias , Purificação da Água/métodos , Compostos de Amônio/análise , Animais , Organismos Aquáticos/microbiologia , Araceae/crescimento & desenvolvimento , Araceae/fisiologia , Biomassa , Daphnia/crescimento & desenvolvimento , Daphnia/microbiologia , Daphnia/fisiologia , Feminino , Nitratos/análise , Nitritos/análise , Oligoquetos/crescimento & desenvolvimento , Oligoquetos/microbiologia , Oligoquetos/fisiologia , Pasteuria/fisiologia , Reprodução , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA