Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Environ Sci Technol ; 54(11): 6800-6811, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32345015

RESUMO

Per- and polyfluoroalkyl substances (PFASs) have attracted scientific and regulatory attention due to their persistence, bioaccumulative potential, toxicity, and global distribution. We determined the accumulation and trophic transfer of 14 PFASs (5 short-chain and 9 long-chain) within the food web of the Yadkin-Pee Dee River of North Carolina and South Carolina, US. Food web components and pathways were determined by stable isotope analyses of producers, consumers, and organic matter. Analyses of water, sediment, organic matter, and aquatic biota revealed that PFASs were prevalent in all food web compartments. Biofilm, an aggregation of bacteria, fungi, algae, and protozoans and a basal resource for the aquatic food web, showed high PFAS accumulation (in 10 of 14 compounds), particularly for perfluorooctanoic acid, with the greatest mean concentration of 463.73 ng/g. The food web compartment with the most detections and greatest concentrations of PFASs was aquatic insects; all 14 PFASs were detected in individual aquatic insect samples (range of 1.0 (range of 0.57 to 2.33); it is possible that an unmeasured PFBS precursor may be accumulating in biota and metabolizing to PFBS, leading to a higher than expected TMFs for this compound. Our findings demonstrate the prevalence of PFASs in a freshwater food web with potential implications for ecological and human health.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Ácidos Alcanossulfônicos/análise , Animais , Monitoramento Ambiental , Fluorocarbonos/análise , Cadeia Alimentar , Humanos , North Carolina , Rios , South Carolina , Poluentes Químicos da Água/análise
2.
Fisheries (Bethesda) ; 45(10): 307-316, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34305274

RESUMO

The purpose of this case study was to examine signs as a means of communicating fish consumption advisory information to English- and Spanish-speaking anglers in North Carolina. This study involved a group of stakeholders, including representatives from local and state agencies, non-governmental organizations, and academia, as well as 38 anglers in focus group discussions to learn about their knowledge and beliefs in the context of fishing in polluted waterways, including what they knew about fish consumption advisories and their perceptions of prototype signs. Across groups, participants identified two confusing elements of signs: the allowable number of servings of fish under advisory and distinct consumption recommendations for different subgroups. They recommended streamlined messaging and the use of visuals, lay terms, and locally relevant languages as ways to improve prototype signs. Additionally, participants identified the state wildlife agency as a common source of information about fish safety, more so than signs. These results suggest opportunities for improved communication of advisories, especially to the most at-risk populations.

3.
Bull Environ Contam Toxicol ; 104(2): 228-234, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31760444

RESUMO

Nuisance algal infestations are increasing globally in distribution and frequency. Copper-based algaecides are routinely applied to control these infestations, though there is an ever-present concern of risks to non-target species. This research evaluated risks associated with a commonly applied chelated copper algaecide (Captain® XTR; SePRO Corporation) to a sentinel non-target species (Daphnia magna) and further assessed alteration of the exposure and toxicity when a nuisance mat-forming cyanobacterium, Lyngbya wollei, was present in exposures. Aqueous copper concentrations in treatments with algae significantly decreased within 1 h after treatment and averaged 57.5% of nominal amended Cu through the experiment duration. The 48 h LC50 values were 371 µg Cu/L with no algae present in exposures and increased significantly to 531 µg Cu/L when L. wollei was simultaneously exposed. This research provides information on the short-term fate of copper and hazard assessment by incorporating targeted binding ligands, as present in operational treatments.


Assuntos
Cobre/metabolismo , Cianobactérias/metabolismo , Exposição Ambiental/prevenção & controle , Herbicidas/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Biodegradação Ambiental , Biomassa , Cobre/toxicidade , Daphnia/metabolismo , Exposição Ambiental/efeitos adversos , Herbicidas/toxicidade , Poluentes Químicos da Água/toxicidade
4.
Environ Res ; 161: 615-623, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29257981

RESUMO

Environmental contamination is problematic for tropical islands due to their typically dense human populations and competing land and water uses. The Caribbean island of Puerto Rico (USA) has a long history of anthropogenic chemical use, and its human population density is among the highest globally, providing a model environment to study contaminant impacts on tropical island stream ecosystems. Polycyclic Aromatic Hydrocarbons, historic-use chlorinated pesticides, current-use pesticides, Polychlorinated Biphenyls (PCBs), and metals (mercury, cadmium, copper, lead, nickel, zinc, and selenium) were quantified in the habitat and biota of Puerto Rico streams and assessed in relation to land-use patterns and toxicological thresholds. Water, sediment, and native fish and shrimp species were sampled in 13 rivers spanning broad watershed land-use characteristics during 2009-2010. Contrary to expectations, freshwater stream ecosystems in Puerto Rico were not severely polluted, likely due to frequent flushing flows and reduced deposition associated with recurring flood events. Notable exceptions of contamination were nickel in sediment within three agricultural watersheds (range 123-336ppm dry weight) and organic contaminants (PCBs, organochlorine pesticides) and mercury in urban landscapes. At an urban site, PCBs in several fish species (Mountain Mullet Agonostomus monticola [range 0.019-0.030ppm wet weight] and American Eel Anguilla rostrata [0.019-0.031ppm wet weight]) may pose human health hazards, with concentrations exceeding the U.S. Environmental Protection Agency (EPA) consumption limit for 1 meal/month. American Eel at the urban site also contained dieldrin (range < detection-0.024ppm wet weight) that exceeded the EPA maximum allowable consumption limit. The Bigmouth Sleeper Gobiomorous dormitor, an important piscivorus sport fish, accumulated low levels of organic contaminants in edible muscle tissue (due to its low lipid content) and may be most suitable for human consumption island-wide; only mercury at one site (an urban location) exceeded EPA's consumption limit of 3 meals/month for this species. These results comprise the first comprehensive island-wide contaminant assessment of Puerto Rico streams and biota and provide natural resource and public health agencies here and in similar tropical islands elsewhere with information needed to guide ecosystem and fisheries conservation and management and human health risk assessment.


Assuntos
Praguicidas , Bifenilos Policlorados , Poluentes Químicos da Água , Animais , Biota , Monitoramento Ambiental , Humanos , Ilhas , Praguicidas/análise , Bifenilos Policlorados/análise , Porto Rico , Rios , Poluentes Químicos da Água/análise
5.
Environ Sci Technol ; 51(9): 5296-5305, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28379677

RESUMO

Estrogens and estrogen mimics are commonly found in surface waters and are associated with deleterious effects in fish populations. Impaired fertility and fecundity in fish following chronic exposures to estrogens and estrogen mimics during critical windows in development are well documented. However, information regarding differential reproductive effects of exposure within defined developmental stages remains sparse. In this study, reproductive capacity was assessed in Japanese medaka (Oryzias latipes) after exposure to two concentrations of 17ß-estradiol (E2ß; 2 ng/L and 50 ng/L) during four distinct stages of development: gonad development, gonad differentiation, development of secondary sex characteristics (SSC) and gametogenesis. Exposure to E2ß did not adversely impact survival, hatch success, growth, or genotypic ratios. In contrast, exposure to 50 ng/L E2ß during SSC development altered phenotypic ratios and SSC. Exposure to both E2ß treatments reduced reproductive capacity (fertility, fecundity) by 7.3-57.4% in adult medaka breeding pairs, with hindrance of SSC development resulting in the largest disruption in breeding capacity (51.6-57.4% decrease) in the high concentration. This study documents differential effects among four critical stages of development and provides insight into factors (window of exposure, exposure concentration and duration of exposure period) contributing to reproductive disruption in fish.


Assuntos
Estradiol/farmacologia , Oryzias , Animais , Gônadas/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Diferenciação Sexual/efeitos dos fármacos
6.
Bull Environ Contam Toxicol ; 99(3): 365-371, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28681162

RESUMO

Filamentous mat-forming cyanobacteria are increasingly impairing uses of freshwater resources. To effectively manage, a better understanding of control measures is needed. Copper (Cu)-based algaecide formulations are often applied to reactively control nuisance cyanobacterial blooms. This laboratory research assessed typical field exposure scenarios for the ability of Cu to partition to, and accumulate in Lyngbya wollei. Exposure factors (Cu concentration × duration) of 4, 8, 16, 24, 32 h were tested across three aqueous Cu concentrations (1, 2, 4 ppm). Results indicated that internally accumulated copper correlated with control of L. wollei, independent of adsorbed copper. L. wollei control was determined by filament viability and chlorophyll a concentrations. Similar exposure factors elicited similar internalized copper levels and consequent responses of L. wollei. Ultimately, a "concentration-exposure-time" (CET) model was created to assist water resource managers in selecting an appropriate treatment regime for a specific in-water infestation. By assessing the exposure concentration and duration required to achieve the internal threshold of copper (i.e., critical burden) that elicits control, water management objectives can be achieved while simultaneously decreasing the environmental loading of copper and potential for non-target species risks.


Assuntos
Cobre/metabolismo , Cianobactérias/metabolismo , Poluentes Químicos da Água/metabolismo , Adsorção , Animais , Clorofila , Clorofila A , Cobre/análise , Cobre/toxicidade , Água Doce , Herbicidas/metabolismo , Herbicidas/toxicidade , Cinética , Água , Poluentes Químicos da Água/toxicidade
7.
Gen Comp Endocrinol ; 206: 213-26, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25072892

RESUMO

Androgen-induced masculinization of female aquatic biota poses concerns for natural population stability. This research evaluated the effects of a twelve day exposure of fadrozole hydrochloride on the metabolism and reproductive status of the unionid mussel Lampsilis fasciola. Although this compound is not considered to be widespread in the aquatic environment, it was selected as a model aromatase (enzyme that converts testosterone to estradiol) inhibitor. Adult mussels were exposed to a control and 3 concentrations of fadrozole (2µg/L, 20µg/L, and 50µg/L), and samples of gill tissue were taken on days 4 and 12 for metabolomics analysis. Gills were used because of the variety of critical processes they mediate, such as feeding, ion exchange, and siphoning. Daily observed mussel behavior included female mantle display, foot protrusion, siphoning, and larval (glochidia) releases. Glochidia mortality was significantly higher in the 20µg/L treatment. Fewer conglutinate (packets of glochidia) releases were observed in the 50µg/L treatment, and mortality was highly correlated to release numbers. Foot protrusion was significantly higher in females in nearly all treatments, including the control, during the first 4days of observations. However, this sex difference was observed only in the 50µg/L treatment during the last 8days. Generally, metabolites were significantly altered in female gill tissue in the 2µg/L treatment whereas males were mostly affected only at the highest (50µg/L) treatment. Both sexes also revealed significant reductions in fadrozole-induced metabolic effects in gill tissue sampled after 12days compared to tissue sampled after 4days, indicating time-dependent mechanisms of disruptions in metabolic pathways and homeostatic processes to compensate for such disruptions.


Assuntos
Inibidores da Aromatase/farmacologia , Comportamento Animal/efeitos dos fármacos , Fadrozol/farmacologia , Metaboloma/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Unionidae/fisiologia , Animais , Feminino , Larva/efeitos dos fármacos , Masculino , Unionidae/efeitos dos fármacos
8.
Aquat Toxicol ; 258: 106476, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36931159

RESUMO

Salinization of freshwater ecosystems due to anthropogenic sources will increasingly impact biodiversity. An example of point-source industrial salinization has occurred from historical activities at a U.S. Environmental Protection Agency Superfund Site near Saltville, Virginia USA and its associated chemical waste ponds adjacent to the North Fork Holston River. These point source discharges are documented contributors to mussel declines, partially due to high concentrations of chloride (Cl-, ≤ 26,000 mg Cl-/L) and potassium (K+, ≤ 97 mg K+/L). During a chronic 61-day laboratory study, Rainbow mussels, Villosa iris, were exposed to concentrations of Cl- (0, 416, 831, and 1,663 mg/L) and K+ (0, 4, 8, and 17 mg/L) to determine effects on survival and organ tissues. All test mussels died by day-2 in the 1,663 mg Cl-/L exposure, and 50% of mussels died by day-13 in the 17 mg K+/L concentration. Significantly greater abundances of tissue abnormalities were observed in digestive glands and kidneys with exposures to the 4 and 8 mg/L concentrations of K+ versus the control, and significantly greater abundances of lesions in kidneys were observed in the 416 and 831 mg Cl-/L concentrations compared to the control. The sublethal effects to digestive glands and kidneys were below reported effect (EC50, 20, 10 and LOEC) concentrations. Significant histological differences between control and baseline (day-0 sample) mussels were observed, suggesting the need for further study on the effects of captivity during longer-term laboratory experiments.


Assuntos
Bivalves , Unionidae , Poluentes Químicos da Água , Animais , Benchmarking , Cloretos/análise , Ecossistema , Água Doce , Potássio , Estados Unidos , Poluentes Químicos da Água/toxicidade
9.
Environ Toxicol Chem ; 42(11): 2478-2489, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37727898

RESUMO

Sea levels across the planet are rising, particularly along the eastern coast of the United States. Climate-induced sea level rise can result in the inundation and intrusion of seawater into freshwater drainages. This would alter salinity regimes and lead to the salinization of coastal freshwater ecosystems. Increased salinity levels in freshwater can negatively affect freshwater-dependent species, including native mussels belonging to the order Unionida, which are highly sensitive to changes in water quality. Sea salt is largely made up of sodium and chloride ions, forming sodium chloride, a known toxicant to freshwater mussels. However, sea salt is a mixture that also contains other major ions, including potassium, sulfate, calcium, strontium, and magnesium, among others. Freshwater mussels exposed to sea salt would be exposed to each of the sea salt ions at the same time, resulting in a mixture toxicity effect. The mixture toxicity of these ions on early life stages of freshwater mussels is largely unknown because most research to date has evaluated individual salt ions in relative isolation. Therefore, we conducted acute toxicity tests on early life stages (glochidia and juvenile) of three freshwater mussel species that inhabit Atlantic Slope drainages (nonsalinity-adapted Atlanticoncha ochracea, salinity-adapted A. ochracea, Sagittunio nasutus, and Utterbackiana implicata). Glochidia and juveniles of each species were exposed to a control and six concentrations of Instant Ocean® Sea Salt (IOSS), a synthetic sea salt that closely resembles the ionic composition of natural sea salt. Exposure concentrations were 1 part(s) per thousand (ppt), 2 ppt, 8.5 ppt, 12.5 ppt, 17 ppt, and 34 ppt. We calculated the median effect concentration (EC50) for each of the eight acute toxicity tests and found that glochidia were more sensitive than juveniles to IOSS. At hour 24 EC50s for the glochidia ranged from 0.38 to 3.6 ppt, with the most sensitive freshwater mussel being the nonsalinity-adapted A. ochracea, exhibiting an EC50 of 0.38 ppt (95% confidence interval [CI] 0.33-0.44). Juvenile freshwater mussels exhibited EC50s at hour 96 ranging from 5.0 to 10.4 ppt, with the least sensitive freshwater mussel being the nonsalinity-adapted A. ochracea, exhibiting an EC50 of 10.4 ppt (95% CI 9.1-12.0). Our results show that acute exposure to sea salt adversely affects freshwater mussel viability, particularly glochidia. This information can be used to enhance freshwater mussel conservation strategies in regions that are or will be impacted by climate-induced sea level rise and associated freshwater salinization. Environ Toxicol Chem 2023;42:2478-2489. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Bivalves , Unionidae , Poluentes Químicos da Água , Animais , Ecossistema , Elevação do Nível do Mar , Água Doce/química , Cloreto de Sódio/toxicidade , Cloretos , Alimentos Marinhos , Poluentes Químicos da Água/análise
10.
Environ Toxicol Chem ; 42(8): 1649-1666, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37191358

RESUMO

Since their introduction to North America in the 1980s, research to develop effective control tools for invasive mussels (Dreissena polymorpha and D. rostriformis bugensis) has been ongoing across various research institutions using a range of testing methods. Inconsistencies in experimental methods and reporting present challenges for comparing data, repeating experiments, and applying results. The Invasive Mussel Collaborative established the Toxicity Testing Work Group (TTWG) in 2019 to identify "best practices" and guide development of a standard framework for dreissenid mussel toxicity testing protocols. We reviewed the literature related to laboratory-based dreissenid mussel toxicity tests and determined the degree to which standard guidelines have been used and their applicability to dreissenid mussel testing. We extracted detailed methodology from 99 studies from the peer-reviewed and gray literature and conducted a separate analysis for studies using presettlement and postsettlement mussels. We identified specific components of methods and approaches that could be refined or standardized for dreissenid mussels. These components included species identification, collection methods, size/age class distinction, maintenance practices, testing criteria, sample size, response measures, reporting parameters, exposure methods, and mortality criteria. We consulted experts in the field of aquatic toxicology and dreissenid mussel biology on our proposed. The final recommendations contained in the present review are based on published standard guidelines, methods reported in the published and gray literature, and the expertise of TTWG members and an external panel. In addition, our review identifies research needs for dreissenid mussel testing including improved methods for early-life stage testing, comparative data on life stages and between dreissenid mussel species, inclusion of a reference toxicant, and additional testing of nontarget species (i.e., other aquatic organisms). Environ Toxicol Chem 2023;42:1649-1666. © 2023 His Majesty the King in Right of Canada. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. Reproduced with the permission of the Minister of Environment and Climate Change Canada. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Bivalves , Dreissena , Animais , Humanos , Espécies Introduzidas , Dreissena/fisiologia , América do Norte , Canadá
11.
Environ Toxicol ; 27(5): 268-76, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-20725939

RESUMO

Freshwater mussels are an imperiled fauna exposed to a variety of environmental toxicants such as lead (Pb) and studies are urgently needed to assess their health and condition to guide conservation efforts. A 28-day laboratory toxicity test with Pb and adult Eastern elliptio mussels (Elliptio complanata) was conducted to determine uptake kinetics and to assess the toxicological effects of Pb exposure. Test mussels were collected from a relatively uncontaminated reference site and exposed to a water-only control and five concentrations of Pb (as lead nitrate) ranging from 1 to 245 µg/L in a static renewal test with a water hardness of 42 mg/L. Endpoints included tissue Pb concentrations, hemolymph Pb and ion (Na⁺, K⁺, Cl⁻, Ca²âº) concentrations, and Na⁺, K⁺-ATPase enzyme activity in gill tissue. Mussels accumulated Pb rapidly, with tissue concentrations increasing at an exposure-dependent rate for the first 2 weeks, but with no significant increase from 2 to 4 weeks. Mussel tissue Pb concentrations ranged from 0.34 to 898 µg/g dry weight, were strongly related to Pb in test water at every time interval (7, 14, 21, and 28 days), and did not significantly increase after day 14. Hemolymph Pb concentration was variable, dependent on exposure concentration, and showed no appreciable change with time beyond day 7, except for mussels in the greatest exposure concentration (245 µg/L), which showed a significant reduction in Pb by 28 days, suggesting a threshold for Pb binding or elimination in hemolymph at concentrations near 1000 µg/g. The Na⁺, K⁺-ATPase activity in the gill tissue of mussels was significantly reduced by Pb on day 28 and was highly correlated with tissue Pb concentration (R² = 0.92; P = 0.013). The Na⁺, K⁺-ATPase activity was correlated with reduced hemolymph Na⁺ concentration at the greatest Pb exposure when enzyme activity was at 30% of controls. Hemolymph Ca²âº concentration increased significantly in mussels from the greatest Pb exposure and may be due to remobilization from the shell in an attempt to buffer the hemolymph against Pb uptake and toxicity. We conclude that Na⁺, K⁺-ATPase activity in mussels was adversely affected by Pb exposure, however, because the effects on activity were variable at the lower test concentrations, additional research is warranted over this range of exposures.


Assuntos
Hemolinfa/metabolismo , Chumbo/toxicidade , ATPase Trocadora de Sódio-Potássio/metabolismo , Unionidae/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Relação Dose-Resposta a Droga , Água Doce/química , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Íons/metabolismo , Chumbo/análise , Chumbo/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Equilíbrio Hidroeletrolítico/efeitos dos fármacos
12.
Environ Toxicol Chem ; 40(8): 2206-2219, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33957001

RESUMO

An in situ bioassay approach was used to determine whether aquatic contaminant stressors in a large Atlantic river ecosystem affect the survival of 3 fish species: the largemouth bass (Micropterus salmoides, juveniles), the fathead minnow (Pimephales promelas, adults), and the robust redhorse (Moxostoma robustum, juveniles). Hatchery-propagated fish were placed into cages to assess site-specific survival in the Yadkin-Pee Dee River of North Carolina and South Carolina, USA. Contaminants were measured in caged fish and sediment and surface water at each site. No apparent longitudinal trends in fish survival were detected, and contaminant concentrations varied among sites. Juvenile largemouth bass and robust redhorse did not survive past 13 and 23 d, with corresponding Kaplan-Meier median survival estimates of 9.7 and 12.1 d, respectively. Survival of adult fathead minnows deployed in cages alongside the juvenile fish averaged 43% at the end of the 28-d exposure, with a 22-d median survival estimate. The intersex condition, an indicator of endocrine disruption, was not observed in any adult fathead minnow. Contaminant accumulation in surviving fathead minnows was apparent, with highest accumulated concentrations of polychlorinated biphenyls (34.6-93.4 ng/g dry wt), organochlorine pesticides (19.9-66.1 ng/g dry wt), and mercury (0.17-0.63 µg/g dry wt). Contaminants and other water quality stressors in this river system appear to detrimentally impact juvenile fish survival, with presumed effects at the fish assemblage and community levels. Environ Toxicol Chem 2021;40:2206-2219. © 2021 SETAC.


Assuntos
Bass , Cyprinidae , Cipriniformes , Poluentes Químicos da Água , Animais , Bioensaio , Ecossistema , Rios , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
13.
Sci Total Environ ; 773: 144757, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940701

RESUMO

The Clinch River watershed of the upper Tennessee River Basin of Virginia and Tennessee, USA supports one of North America's greatest concentrations of freshwater biodiversity, including 46 extant species of native freshwater mussels (Order Unionida), 20 of which are protected as federally endangered. Despite the global biological significance of the Clinch River, mussel populations are declining in some reaches, both in species richness and abundance. The aim of this study was to evaluate the exposure of adult resident mussels to a suite of inorganic and organic contaminant stressors in distinct sections of the Clinch River that encompassed a range of mussel abundance and health. To provide insight into the potential role of pollutants in the decline of mussels, including within a previously documented "zone of mussel decline", the mainstem Clinch River (8 sites) and its tributaries (4 sites) were examined over two consecutive years. We quantified and related metals and organic contaminant concentrations in mussels to their associated habitat compartments (bed sediment, suspended particulate sediment, pore water, and surface water). We found that concentrations of organic contaminants in resident mussels, particularly the suite of 42 polycyclic aromatic hydrocarbons (PAHs) analyzed, were related to PAH concentrations in all four habitat (media) compartments. Further, PAH concentrations in mussel tissue (range 37.8-978.1 ng/g dry weight in 2012 and 194.3-1073.7 ng/g dry weight in 2013) were negatively related to the spatial pattern in mussel densities (rs = -0.64, p ≤ 0.05 in 2012 and rs = -0.83, p ≤ 0.05 in 2013) within the river, and were highest in the "zone of mussel decline". In contrast, the suite of 22 metals analyzed in resident mussels were largely unrelated to the spatial pattern of variation of metals in the four habitat compartments except for Manganese (Mn; range 3630.5-23,749.2 µg/g dry weight in 2012 and 1540.4-12,605.8 µg/g dry weight in 2013) in surface water (rs = 0.58, p < 0.1) and pore water (rs = 0.76, p ≤ 0.05). This study revealed that PAHs and Mn are important pollutant stressors to mussels in the Clinch River and that they are largely being delivered through the Guest River tributary watershed. Accordingly, future conservation and management efforts would benefit by identifying, and ideally mitigating, the sources of PAHs, Mn, and other current or legacy mining-associated pollutants to the mainstem river and its tributaries.


Assuntos
Bivalves , Poluentes Ambientais , Poluentes Químicos da Água , Animais , Biodiversidade , Monitoramento Ambiental , Água Doce , Tennessee , Virginia , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
14.
Environ Toxicol Chem ; 40(12): 3392-3409, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34592004

RESUMO

The US Environmental Protection Agency's short-term freshwater effluent test methods include a fish (Pimephales promelas), a cladoceran (Ceriodaphnia dubia), and a green alga (Raphidocelis subcapitata). There is a recognized need for additional taxa to accompany the three standard species for effluent testing. An appropriate additional taxon is unionid mussels because mussels are widely distributed, live burrowed in sediment and filter particles from the water column for food, and exhibit high sensitivity to a variety of contaminants. Multiple studies were conducted to develop a relevant and robust short-term test method for mussels. We first evaluated the comparative sensitivity of two mussel species (Villosa constricta and Lampsilis siliquoidea) and two standard species (P. promelas and C. dubia) using two mock effluents prepared by mixing ammonia and five metals (cadmium, copper, nickel, lead, and zinc) or a field-collected effluent in 7-day exposures. Both mussel species were equally or more sensitive (more than two-fold) to effluents compared with the standard species. Next, we refined the mussel test method by first determining the best feeding rate of a commercial algal mixture for three age groups (1, 2, and 3 weeks old) of L. siliquoidea in a 7-day feeding experiment, and then used the derived optimal feeding rates to assess the sensitivity of the three ages of juveniles in a 7-day reference toxicant (sodium chloride [NaCl]) test. Juvenile mussels grew substantially (30%-52% length increase) when the 1- or 2-week-old mussels were fed 2 ml twice daily and the 3-week-old mussels were fed 3 ml twice daily. The 25% inhibition concentrations (IC25s) for NaCl were similar (314-520 mg Cl/L) among the three age groups, indicating that an age range of 1- to 3-week-old mussels can be used for a 7-day test. Finally, using the refined test method, we conducted an interlaboratory study among 13 laboratories to evaluate the performance of a 7-day NaCl test with L. siliquoidea. Eleven laboratories successfully completed the test, with more than 80% control survival and reliable growth data. The IC25s ranged from 296 to 1076 mg Cl/L, with a low (34%) coefficient of variation, indicating that the proposed method for L. siliquoidea has acceptable precision. Environ Toxicol Chem 2021;40:3392-3409. © 2021 SETAC.


Assuntos
Bivalves , Unionidae , Poluentes Químicos da Água , Animais , Água Doce , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade
15.
Environ Toxicol Chem ; 29(3): 691-9, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20821496

RESUMO

Freshwater mussels fulfill an essential role in aquatic communities, but are also one of the most sensitive and rapidly declining faunal groups in North America. Rising water temperatures, caused by global climate change or industrial discharges, can further challenge impaired unionid communities, but thermal stress is almost certainly not the only stressor affecting freshwater mussels. Metals, such as copper (Cu), are a common source of toxicant exposure in aquatic environments. The toxic effects of Cu on the early life stages of freshwater mussels have been well studied, and freshwater mussels are more sensitive to Cu than most aquatic organisms. The purpose of the present study was to determine the effect of a sublethal copper concentration on the upper thermal tolerance of three species, Lampsilis siliquoidea, Potamilus alatus, and Ligumia recta, of juvenile freshwater mussels in 48- and 96-h tests. Thermal tolerance was determined over a range of experimental temperatures (20-42 degrees C) at three acclimation temperatures (17, 22, and 27 degrees C). Median lethal temperatures (LT50s) were calculated in the absence and presence of Cu, and at 48 h ranged from 34.6 to 44.4 degrees C (mean 37.7 degrees C) without Cu, and from 33.8 to 38.9 degrees C (mean 35.8 degrees C) with Cu. The LT50s at 96 h ranged from 32.5 to 35.6 degrees C (mean 34.5 degrees C) without Cu and from 33.0 to 35.4 degrees C (mean 34.2 degrees C) with Cu. Potamilus alatus had a significantly lower 48 h LT50 with Cu than without Cu at the 22 degrees C acclimation temperature; there were no other significant differences in LT50s attributed to Cu. Survival trends showed limited evidence of interactive effects between copper and temperature for all three species, suggesting the combined stress of elevated temperatures and copper exposure to freshwater mussels should be further explored.


Assuntos
Cobre/toxicidade , Unionidae/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Água Doce , Temperatura
16.
Ecotoxicology ; 19(8): 1601-11, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20848188

RESUMO

Much of the mercury contamination in aquatic biota originates from coal-fired power plants, point sources that release mercury into the atmosphere. Understanding mercury dynamics is primarily important because of the toxic threat mercury poses to wildlife and humans through the consumption of contaminated fish. In this study, we quantified the relative importance of proximity to coal-fired power plants on mercury accumulation in two fish species of different trophic positions. Fish, water and sediment were collected and analyzed from 14 lakes, seven near to (<10 km) and seven far from (>30 km) coal-fired power plants. Lower tissue mercury and higher tissue selenium concentrations were measured in fish collected near power plants. Moreover, mercury accumulation in fish was driven by biotic characteristics (e.g., trophic position, total length, age), waterbody characteristics (e.g., pH, dissolved organic carbon and sulfate) and distance from power plants. Proximity to an atmospheric point-source of mercury and selenium, such as a coal-fired power plant, affects the quantities of mercury and selenium accumulated in fish tissue. Differences in accumulation are hypothesized to be driven in part by selenium-mitigated reductions in fish tissue mercury near power plants. Although reduced fish tissue mercury in systems near power plants may decrease mercury-specific risks to human consumers, these benefits are highly localized and the relatively high selenium associated with these tissues may compromise ecological health.


Assuntos
Peixes/metabolismo , Mercúrio/metabolismo , Centrais Elétricas , Poluentes Químicos da Água/metabolismo , Animais , Carvão Mineral , Monitoramento Ambiental/métodos , Contaminação de Alimentos/análise , Água Doce , Sedimentos Geológicos/química , Humanos , Mercúrio/toxicidade , Selênio/metabolismo , Especificidade da Espécie , Distribuição Tecidual , Poluentes Químicos da Água/toxicidade
17.
Artigo em Inglês | MEDLINE | ID: mdl-19596075

RESUMO

Freshwater mussels (Unionoida) are one of the most sensitive and rapidly declining faunal groups in the world. Rising water temperatures, caused by industrial discharges, land development, or climate change can further challenge threatened unionid communities. The direct relationship between heart rate and temperature in ectotherms enables the use of heart rate as an indicator of whole-animal thermal stress. The purpose of this study was to assess the utility of heart rate as an indicator of thermal stress in freshwater mussels. Seven species of juvenile mussels (Lampsilis siliquoidea, Potamilus alatus, Ligumia recta, Ellipsaria lineolata, Megalonaias nervosa, Alasmidonta varicosa, and Villosa delumbis) were evaluated in response to a range of experimental temperatures (20-36 degrees C) at three acclimation temperatures (17, 22, and 27 degrees C). Heart rate was measured by direct visual observation through transparent mussel shells. The average heart rate for all 7 species at 20 degrees C was 55bpm, with a range from 38bpm (L. recta) to 65bpm (P. alatus). L. recta and V. delumbis exhibited significant changes in heart rate with increasing temperature at each of the three acclimation temperatures. The use of heart rate appears to be a suitable indicator of thermal stress in some unionid mussels.


Assuntos
Bivalves/fisiologia , Aclimatação/fisiologia , Animais , Água Doce , Frequência Cardíaca , Estresse Fisiológico , Temperatura
18.
J Agromedicine ; 23(4): 381-392, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30230437

RESUMO

OBJECTIVES: Certified Safe Farm (CSF) is a multimodal intervention composed of four components: safety, health, education, and economic incentive. North Carolina has conducted the largest implementation of CSF outside of the Midwestern United States where it was developed. This paper describes the Efficacy dimension of the Reach Effectiveness Adoption Implementation Maintenance (RE-AIM) framework for the implementation of CSF in North Carolina during 2009-2012 on 113 farms in a three-county, highly productive and diverse agricultural area. METHODS: Using descriptive statistics, analysis of variance, correlational analyses, and logistic regression, quantitative data were examined from on-farm safety reviews, as well as primary operators' use of cost-share funds as an economic incentive (34% participation) to make identified safety and health improvements on the farm. RESULTS: Overall farm safety review scores were generally high (96% passing rate). Category scores revealed hazards in seven key categories: Chemical Storage; Tractors; Machine Shop, Repair Area; Gravity Flow, Auger, and Forage Wagons; Portable Augers; Dairy and Beef Structures; and Swine and Poultry Structures. The cost-share economic incentive component was utilized in addressing hazards in five of these categories, as well as in nine others. The average per farm cost-share reimbursement was $3,276, with a median of $1,615. In total, an investment of $255,307 (farmer investment plus incentive) was made in safety and health improvements on farms (n = 38). Correlation and logistic regression analyses revealed no significant relationships among scores, cost-share investments, and selected farm demographics. CONCLUSION: Findings suggest the 50% cost-share for safety and health improvements is a promising economic incentive model for CSF implementation.


Assuntos
Agricultura/organização & administração , Gestão da Segurança/organização & administração , Acidentes de Trabalho/prevenção & controle , Fazendas , Humanos , Motivação , North Carolina , Saúde Ocupacional/economia , Gestão da Segurança/métodos
19.
Environ Toxicol Chem ; 37(8): 2132-2142, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29736933

RESUMO

Copper-based algaecides are routinely applied to target noxious algal blooms in freshwaters. Standard toxicity testing data with copper suggest that typical concentrations used to control algae can cause deleterious acute impacts to nontarget organisms. These "clean" water experiments lack algae, which are specifically targeted in field applications of algaecides and contain competing ligands. The present research measured the influence of algae on algaecide exposure and subsequent response of the nontarget species Daphnia magna to copper sulfate and an ethanolamine-chelated copper algaecide (Captain®). Significant shifts (p < 0.05) in D. magna 48-h median lethal concentration (LC50) values were found when algae were present in exposures along with a copper salt or a chelated copper formulation. Copper sulfate 48-h LC50 values shifted from 75.3 to 317.8 and 517.8 µg Cu/L, whereas Captain increased from 353.8 to 414.2 and 588.5 µg Cu/L in no algae, 5 × 105 , and 5 × 106 cells/mL algae treatments, respectively. Larger shifts were measured with copper sulfate exposures, although Captain was less toxic to D. magna in all corresponding treatments. Captain was more effective at controlling Scenedesmus dimorphus at most concentrations, and control was inversely proportional to toxicity to D. magna. Overall, incorporating target competing ligands (i.e., algae) into standard toxicity testing is important for accurate risk assessment, and copper formulation can significantly alter algaecidal efficacy and risks to nontarget organisms. Environ Toxicol Chem 2018;37:2132-2142. © 2018 SETAC.


Assuntos
Cobre/toxicidade , Daphnia/efeitos dos fármacos , Eutrofização , Herbicidas/toxicidade , Testes de Toxicidade , Animais , Sulfato de Cobre/toxicidade , Exposição Ambiental/análise , Água Doce , Dinâmica não Linear , Análise de Regressão , Poluentes Químicos da Água/toxicidade
20.
Artigo em Inglês | MEDLINE | ID: mdl-30158428

RESUMO

Mercury (Hg) bioaccumulates in aquatic ecosystems and may pose a risk to humans who consume fish. Selenium (Se) has the ability to reduce Hg toxicity, but the current guidance for human consumption of fish is based on Hg concentration alone. The purpose of the present study was to examine the relationship between Se and Hg in freshwater sportfish, for which there is a paucity of existing data. We collected three species of fish from different trophic positions from two drinking water reservoirs in central North Carolina, USA, to assess Hg and Se concentrations in relation to fish total length and to compare two measures of the protective ability of Se, the Se:Hg molar ratio and Se health benefit value (HBVSe), to current guidance for Hg. According to the Se:Hg molar ratio, all of the low trophic position fish sampled and the middle trophic position fish sampled from one of the reservoirs were safe for consumption. The same number of fish were considered safe using the HBVSe. More fish were deemed unsafe when using the Se:Hg molar ratio and HBVSe than were considered unsafe when using the U.S. Environmental Protection Agency (USEPA) Hg threshold. These findings suggest that the measures of Se protection may be unnecessarily conservative or that the USEPA Hg threshold may not be sufficiently protective of human health, especially the health of sensitive populations like pregnant or nursing mothers and young children. Future examination of the Se:Hg molar ratio and HBVSe from a variety of fish tissue samples would help refine the accuracy of these measures so that they may be appropriately utilized in ecological and human health risk assessment.


Assuntos
Água Potável/química , Peixes , Mercúrio/análise , Selênio/análise , Poluentes Químicos da Água/análise , Animais , Criança , Monitoramento Ambiental , Água Doce , Humanos , North Carolina , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA