Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Molecules ; 27(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35458601

RESUMO

During and following the processing of a plant's raw material, considerable amounts are wasted, composted, or redistributed in non-alimentary sectors for further use (for example, some forms of plant waste contribute to biofuel, bioethanol, or biomass production). However, many of these forms of waste still consist of critical bioactive compounds used in the food industry or medicine. Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders. The primary treatment is based on symptomatology alleviation and controlled dietary management. Thus, this review aimed to describe the possible relevance of molecules residing in plant waste that can be used to manage IBS and co-occurring symptoms. Significant evidence was found that many forms of fruit, vegetable, and medicinal plant waste could be the source of some molecules that could be used to treat or prevent stool consistency and frequency impairments and abdominal pain, these being the main IBS symptoms. While many of these molecules could be recovered from plant waste during or following primary processing, the studies suggested that enriched food could offer efficient valorization and prevent further changes in properties or stability. In this way, root, stem, straw, leaf, fruit, and vegetable pomaces were found to consist of biomolecules that could modulate intestinal permeability, pain perception, and overall gastrointestinal digestive processes.


Assuntos
Síndrome do Intestino Irritável , Dor Abdominal , Indústria Alimentícia , Frutas , Síndrome do Intestino Irritável/tratamento farmacológico , Verduras
2.
Molecules ; 26(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34279380

RESUMO

Cannabis sativa L. (hemp) is a plant used in the textile industry and green building material industry, as well as for the phytoremediation of soil, medical treatments, and supplementary food products. The synergistic effect of terpenes, flavonoids, and cannabinoids in hemp extracts may mediate the biogenic synthesis of metal nanoparticles. In this study, the chemical composition of aqueous leaf extracts of three varieties of Romanian hemp (two monoecious, and one dioecious) have been determined by Fourier-Transformed Infrared spectroscopy (FT-IR), high-performance liquid chromatography, and mass spectrometry (UHPLC-DAD-MS). Then, their capability to mediate the green synthesis of silver nanoparticles (AgNPs) and their pottential antibacterial applications were evaluated. The average antioxidant capacity of the extracts had 18.4 ± 3.9% inhibition determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 78.2 ± 4.1% determined by 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS™) assays. The total polyphenolic content of the extracts was 1642 ± 32 mg gallic acid equivalent (GAE) L-1. After this, these extracts were reacted with an aqueous solution of AgNO3 resulting in AgNPs, which were characterized by UV-VIS spectroscopy, FT-IR, scanning electron microscopy (SEM-EDX), and dynamic light scattering (DLS). The results demonstrated obtaining spherical, stable AgNPs with a diameter of less than 69 nm and an absorbance peak at 435 nm. The mixture of extracts and AgNPs showed a superior antioxidant capacity of 2.3 ± 0.4% inhibition determined by the DPPH• assay, 88.5 ± 0.9% inhibition as determined by the ABTS•+ assay, and a good antibacterial activity against several human pathogens: Escherichia coli, Klebsiella pneumoniae, Pseudomonas fluorescens, and Staphylococcus aureus.


Assuntos
Antibacterianos/química , Cannabis/química , Química Verde/métodos , Nanopartículas Metálicas/química , Extratos Vegetais/química , Antioxidantes/química , Folhas de Planta/química , Polifenóis/análise , Prata/química
3.
Molecules ; 26(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34299656

RESUMO

Chemical composition, antioxidant capacity, and antimicrobial activity of lavender essential oils (LEOs) extracted from three different varieties of Lavandula angustifolia Mill. (1-Moldoveanca 4, 2-Vis magic 10, and 3-Alba 7) have been determined. These plants previously patented in the Republic of Moldova were cultivated in an organic agriculture system in the northeastern part of Romania and then harvested in 3 consecutive years (2017-2019) to obtain the essential oils. From the inflorescences in the complete flowering stage, the LEOs were extracted by hydrodistillation. Then, their composition was analyzed by gas chromatography coupled with mass spectrometry (GC-MS) and by Fourier Transformed Infrared spectroscopy (FT-IR). The major identified constituents are as follows: linalool (1: 32.19-46.83%; 2: 29.93-30.97%; 3: 31.97-33.77%), linalyl acetate (1: 17.70-35.18%; 2: 27.55-37.13%; 3: 28.03-35.32%), and terpinen-4-ol (1: 3.63-7.70%; 2: 3.06-7.16%; 3: 3.10-6.53%). The antioxidant capacity as determined by ABTS and DPPH assays indicates inhibition, with the highest activity obtained for LEO var. Alba 7 from 2019. The in vitro antimicrobial activities of the LEOs and combinations were investigated as well, by using the disk diffusion method and minimum inhibitory concentration (MIC) against the Gram-positive bacterial strain Staphylococcus aureus (ATCC 6538), Gram-negative Pseudomonas aeruginosa (ATCC 27858), Escherichia coli (ATCC 25922), the yeast Candida albicans (ATCC 10231), and clinical isolates. Our results have shown that LEOs obtained from the three studied varieties of L. angustifolia manifest significant bactericidal effects against tested microorganisms (Staphylococcus aureus and Escherichia coli), and antifungal effects against Candida albicans. The mixture of LEOs (Var. Alba 7) and geranium, respectively, in tea tree EOs, in different ratios, showed a significant enhancement of the antibacterial effect against all the studied strains, except Pseudomonas aeruginosa.


Assuntos
Anti-Infecciosos , Antioxidantes , Bactérias/crescimento & desenvolvimento , Candida albicans/crescimento & desenvolvimento , Lavandula/química , Óleos Voláteis , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/farmacologia
4.
Adv Exp Med Biol ; 1140: 665-684, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31347078

RESUMO

Stilbenes represent a class of compounds with a common 1,2-diphenylethylene backbone that have shown extraordinary potential in the biomedical field. As the most well-known example, resveratrol proved to have anti-aging effects and significant potential in the fight against cardiovascular diseases and some types of cancer. Mass spectrometry is an analytical method of critical importance in all studies related to stilbenes that are important in the biomedical field. From the discovery of new natural compounds and mapping the grape metabolome up to advanced investigations of stilbenes' potential for the protection of human health in clinical studies, mass spectrometry has provided critical analytical information. In this review we focus on various approaches related to mass spectrometry for the detection of stilbenes-such as coupling with chromatographic separation methods and direct infusion-with presentation of some illustrative applications. Clearly, the potential of mass spectrometry for assisting in the discovery of new stilbenes of biomedical importance, elucidating their mechanisms of action and quantifying minute quantities in complex matrices is far from being exhausted.


Assuntos
Espectrometria de Massas , Estilbenos/análise , Vinho/análise , Humanos , Resveratrol
5.
Ecotoxicology ; 28(6): 631-642, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31161525

RESUMO

Understanding the effects of many essential non-steroidal anti-inflammatory drugs (NSAIDs) on plants is still limited, especially at environmentally realistic concentrations. This paper presents the influence of three of the most frequently used NSAIDs (diclofenac, ibuprofen, and naproxen) at environmentally realistic concentrations on the autochthonous green leafy vegetables: orache (Atriplex patula L.), spinach (Spinacia oleracea L.) and lettuce (Lactuca sativa L.). Our research was focused on the determination of the photosynthetic parameters, the emission rate of volatile organic compounds, and the evaluation of the ultrastructure of leaves of studied vegetables after exposure to abiotic stress induced by environmental pollutants, namely NSAIDs. The data obtained indicate a moderate reduction of foliage physiological activity as a response to the stress induced by NSAIDs to the selected green leafy vegetables. The increase of the 3-hexenal and monoterpene emission rates with increasing NSAIDs concentration could be used as a sensitive and a rapid indicator to assess the toxicity of the NSAIDs. Microscopic analysis showed that the green leafy vegetables were affected by the selected NSAIDs. In comparison to the controls, the green leafy vegetables treated with NSAIDs presented irregular growth of glandular trichomes on the surface of the adaxial side of the leaves, less stomata, cells with less cytoplasm, irregular cell walls and randomly distributed chloroplasts. Of the three NSAIDs investigated in this study, ibuprofen presented the highest influence. The results obtained in this study can be used to better estimate the impact of drugs on the environment and to improve awareness on the importance of the responsible use of drugs.


Assuntos
Anti-Inflamatórios não Esteroides/efeitos adversos , Atriplex/efeitos dos fármacos , Poluentes Ambientais/efeitos adversos , Lactuca/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Spinacia oleracea/efeitos dos fármacos , Compostos Orgânicos Voláteis/metabolismo , Atriplex/fisiologia , Atriplex/ultraestrutura , Diclofenaco/efeitos adversos , Ibuprofeno/efeitos adversos , Lactuca/fisiologia , Lactuca/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Naproxeno/efeitos adversos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/ultraestrutura , Spinacia oleracea/fisiologia , Spinacia oleracea/ultraestrutura
6.
Environ Exp Bot ; 138: 184-192, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-29367792

RESUMO

Gypsy moth (Lymantria dispar L., Lymantriinae) is a major pest of pedunculate oak (Quercus robur) forests in Europe, but how its infections scale with foliage physiological characteristics, in particular with photosynthesis rates and emissions of volatile organic compounds has not been studied. Differently from the majority of insect herbivores, large larvae of L. dispar rapidly consume leaf area, and can also bite through tough tissues, including secondary and primary leaf veins. Given the rapid and devastating feeding responses, we hypothesized that infection of Q. robur leaves by L. dispar leads to disproportionate scaling of leaf photosynthesis and constitutive isoprene emissions with damaged leaf area, and to less prominent enhancements of induced volatile release. Leaves with 0% (control) to 50% of leaf area removed by larvae were studied. Across this range of infection severity, all physiological characteristics were quantitatively correlated with the degree of damage, but all these traits changed disproportionately with the degree of damage. The net assimilation rate was reduced by almost 10-fold and constitutive isoprene emissions by more than 7-fold, whereas the emissions of green leaf volatiles, monoterpenes, methyl salicylate and the homoterpene (3E)-4,8-dimethy-1,3,7-nonatriene scaled negatively and almost linearly with net assimilation rate through damage treatments. This study demonstrates that feeding by large insect herbivores disproportionately alters photosynthetic rate and constitutive isoprene emissions. Furthermore, the leaves have a surprisingly large capacity for enhancement of induced emissions even when foliage photosynthetic function is severely impaired.

7.
Biochim Biophys Acta ; 1828(5): 1365-73, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23357356

RESUMO

Harnessing of a branched structure is a novel approach in the design of cell-penetrating peptides and it has provided highly efficient transfection reagents for intracellular delivery of nucleic acids. The new stearylated TP10 analogs, NickFects, condense plasmid DNA, splice correcting oligonucleotides and short interfering RNAs into stable nanoparticles with a size of 62-160nm. Such nanoparticles have a negative surface charge (-11 to -18mV) in serum containing medium and enable highly efficient gene expression, splice correction and gene silencing. One of the novel peptides, NickFect51 is capable of transfecting plasmid DNA into a large variety of cell lines, including refractory suspension and primary cells and in several cases exceeds the transfection level of commercially available reagent Lipofectamine™ 2000 without any cytotoxic side effects. Additionally we demonstrate the advantages of NickFect51 in a protein production system, QMCF technology, for expression and production of recombinant proteins in hardly transfectable suspension cells.


Assuntos
Peptídeos Penetradores de Células/química , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Ácidos Nucleicos/genética , Sequência de Aminoácidos , Animais , Células CHO , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Células Cultivadas , Cricetinae , Cricetulus , Vetores Genéticos/química , Células HEK293 , Células HeLa , Humanos , Células Jurkat , Luciferases/genética , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Nanopartículas/ultraestrutura , Oligonucleotídeos/genética , Plasmídeos/química , Plasmídeos/genética , RNA Interferente Pequeno/genética , Ácidos Esteáricos/química , Transfecção/métodos
8.
Polymers (Basel) ; 16(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38543342

RESUMO

In seeking alternative cancer treatments, antimicrobial peptides (AMPs), sourced from various life forms, emerge as promising contenders. These endogenous peptides, also known as host defense peptides (HDPs), play crucial roles in immune defenses against infections and exhibit potential in combating cancers. With their diverse defensive functions, plant-derived AMPs, such as thionins and defensins, offer a rich repertoire of antimicrobial properties. Insects, amphibians, and animals contribute unique AMPs like cecropins, temporins, and cathelicidins, showcasing broad-spectrum activities against bacteria, fungi, and viruses. Understanding these natural peptides holds significant potential for developing effective and targeted therapies against cancer and infectious diseases. Antimicrobial peptides (AMPs) exhibit diverse structural characteristics, including α-helical, ß-sheet, extended, and loop peptides. Environmental conditions influence their structure, connecting to changes in cell membrane hydrophobicity. AMPs' actions involve direct killing and immune regulation, with additional activities like membrane depolarization. In this review, we focus on antimicrobial peptides that act as anticancer agents and AMPs that exhibit mechanisms akin to antimicrobial activity. Buforin AMPs, particularly Buforin I and II, derived from histone H2A, demonstrate antibacterial and anticancer potential. Buforin IIb and its analogs show promise, with selectivity for cancer cells. Despite the challenges, AMPs offer a unique approach to combat microbial resistance and potential cancer treatment. In various cancer types, including HeLa, breast, lung, ovarian, prostate, and liver cancers, buforins demonstrate inhibitory effects and apoptosis induction. To address limitations like stability and bioavailability, researchers explore buforin-containing bioconjugates, covalently linked with nanoparticles or liposomes. Bioconjugation enhances specificity-controlled release and combats drug resistance, presenting a promising avenue for targeted cancer treatment. Clinical translation awaits further evaluation through in vivo studies and future clinical trials.

9.
Bioconjug Chem ; 24(3): 305-13, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23350661

RESUMO

Gliomas are therapeutically challenging cancers with poor patient prognosis. New drug delivery strategies are needed to achieve a more efficient chemotherapy-based approach against brain tumors. The current paper demonstrates development of a tumor-targeted delivery vector that is based on a cell-penetrating peptide pVEC and a novel glioma-targeting peptide sequence gHo. The unique tumor-homing peptide gHo was identified using in vitro phage display technology. The novel delivery vector, which we designated as gHoPe2, was constructed by a covalent conjugation of pVEC, gHo, and a cargo; the latter could be either a labeling moiety (such as a fluorescent marker) or a cytostatic entity. Using a fluorescent marker, we demonstrate efficient uptake of the vector in glioma cells and selective labeling of glioma xenograft tumors in a mouse model. This is the first time that we know where in vitro phage display has yielded an efficient, in vivo working vector. We also demonstrate antitumor efficacy of the delivery vector gHoPe2 using a well-characterized chemotherapeutic drug doxorubicin. Vectorized doxorubicin proved to be more efficient than the free drug in a mouse glioma xenograft model after systemic administration of the drugs. In conclusion, we have characterized a novel glioma-homing peptide gHo, demonstrated development of a new and potential glioma-targeted drug delivery vector gHoPe2, and demonstrated the general feasibility of the current approach for constructing cell-penetrating peptide-based targeted delivery systems.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Peptídeos Penetradores de Células/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Vetores Genéticos/administração & dosagem , Glioma/tratamento farmacológico , Sequência de Aminoácidos , Animais , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/genética , Feminino , Vetores Genéticos/genética , Glioma/genética , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Nus , Dados de Sequência Molecular , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
10.
Hum Reprod ; 28(7): 1874-89, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23585561

RESUMO

STUDY QUESTION: Do cell penetrating peptides (CPPs) translocate into spermatozoa and, if so, could they be utilized to deliver a much larger protein cargo? SUMMARY ANSWER: Chemically diverse polycationic CPPs rapidly and efficiently translocate into spermatozoa. They exhibit differential accumulation within intracellular compartments without detrimental influences upon cellular viability or motility but they are relatively ineffective in transporting larger proteins. WHAT IS ALREADY KNOWN: Endocytosis, the prevalent route of protein internalization into eukaryotic cells, is severely compromised in mature spermatozoa. Thus, the translocation of many bioactive agents into sperm is relatively inefficient. However, the delivery of bioactive moieties into mature spermatozoa could be significantly improved by the identification and utility of an efficient and inert vectorial delivery technology. STUDY DESIGN: CPP translocation efficacies, their subsequent differential intracellular distribution and the influence of peptides upon viability were determined in bovine spermatozoa. Temporal analyses of sperm motility in the presence of exogenously CPPs utilized normozoospermic human donor samples. MATERIALS AND METHODS: CPPs were prepared by manual, automated and microwave-enhanced solid phase synthesis. Confocal fluorescence microscopy determined the intracellular distribution of rhodamine-conjugated CPPs in spermatozoa. Quantitative uptake and kinetic analyses compared the translocation efficacies of chemically diverse CPPs and conjugates of biotinylated CPPs and avidin. 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) conversion assays were employed to analyse the influence of CPPs upon sperm cell viability and sperm class assays determined the impact of CPPs on motility in capacitated and non-capacitated human samples. MAIN RESULTS: Chemically heterogeneous CPPs readily translocated into sperm to accumulate within discrete intracellular compartments. Mitoparan (INLKKLAKL(Aib)KKIL), for example, specifically accumulated within the mitochondria located in the sperm midpiece. The unique plasma membrane composition of sperm is a critical factor that directly influences the uptake efficacy of structurally diverse CPPs. No correlations in efficacies were observed when comparing CPP uptake into sperm with either uptake into fibroblasts or direct translocation across a phosphatidylcholine membrane. These comparative investigations identified C105Y (CSIPPEVKFNKPFVYLI) as a most efficient pharmacokinetic modifier for general applications in sperm biology. Significantly, CPP uptake induced no detrimental influence upon either bovine sperm viability or the motility of human sperm. As a consequence of the lack of endocytotic machinery, the CPP-mediated delivery of much larger protein complexes into sperm is relatively inefficient when compared with the similar process in fibroblasts. LIMITATIONS, REASONS FOR CAUTION: It is possible that some CPPs could directly influence aspects of sperm biology and physiology that were not analysed in this study. WIDER IMPLICATIONS OF THE FINDINGS: CPP technologies have significant potential to deliver selected bioactive moieties and so could modulate the biology and physiology of human sperm biology both prior- and post-fertilization.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Animais , Bovinos , Permeabilidade da Membrana Celular , Endocitose , Humanos , Masculino , Camundongos , Células NIH 3T3 , Transporte Proteico
11.
Nucleic Acids Res ; 39(9): 3972-87, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21245043

RESUMO

While small interfering RNAs (siRNAs) have been rapidly appreciated to silence genes, efficient and non-toxic vectors for primary cells and for systemic in vivo delivery are lacking. Several siRNA-delivery vehicles, including cell-penetrating peptides (CPPs), have been developed but their utility is often restricted by entrapment following endocytosis. Hence, developing CPPs that promote endosomal escape is a prerequisite for successful siRNA implementation. We here present a novel CPP, PepFect 6 (PF6), comprising the previously reported stearyl-TP10 peptide, having pH titratable trifluoromethylquinoline moieties covalently incorporated to facilitate endosomal release. Stable PF6/siRNA nanoparticles enter entire cell populations and rapidly promote endosomal escape, resulting in robust RNAi responses in various cell types (including primary cells), with minimal associated transcriptomic or proteomic changes. Furthermore, PF6-mediated delivery is independent of cell confluence and, in most cases, not significantly hampered by serum proteins. Finally, these nanoparticles promote strong RNAi responses in different organs following systemic delivery in mice without any associated toxicity. Strikingly, similar knockdown in liver is achieved by PF6/siRNA nanoparticles and siRNA injected by hydrodynamic infusion, a golden standard technique for liver transfection. These results imply that the peptide, in addition to having utility for RNAi screens in vitro, displays therapeutic potential.


Assuntos
Peptídeos Penetradores de Células/química , Lipopeptídeos/química , Quinolinas/química , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , Animais , Peptídeos Penetradores de Células/metabolismo , Peptídeos Penetradores de Células/toxicidade , Células Cultivadas , Endossomos/metabolismo , Humanos , Indicadores e Reagentes , Mediadores da Inflamação/metabolismo , Lipídeos , Lipopeptídeos/metabolismo , Camundongos , Nanopartículas/química , Nanopartículas/toxicidade , Quinolinas/metabolismo
12.
Pharmaceutics ; 15(8)2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37631305

RESUMO

Membrane-active peptides (MAPs) possess unique properties that make them valuable tools for studying membrane structure and function and promising candidates for therapeutic applications. This review paper provides an overview of the fundamental aspects of MAPs, focusing on their membrane interaction mechanisms and potential applications. MAPs exhibit various structural features, including amphipathic structures and specific amino acid residues, enabling selective interaction with multiple membranes. Their mechanisms of action involve disrupting lipid bilayers through different pathways, depending on peptide properties and membrane composition. The therapeutic potential of MAPs is significant. They have demonstrated antimicrobial activity against bacteria and fungi, making them promising alternatives to conventional antibiotics. MAPs can selectively target cancer cells and induce apoptosis, opening new avenues in cancer therapeutics. Additionally, MAPs serve as drug delivery vectors, facilitating the transport of therapeutic cargoes across cell membranes. They represent a fascinating class of biomolecules with significant potential in basic research and clinical applications. Understanding their mechanisms of action and designing peptides with enhanced selectivity and efficacy will further expand their utility in diverse fields. Exploring MAPs holds promise for developing novel therapeutic strategies against infections, cancer, and drug delivery challenges.

13.
Plants (Basel) ; 12(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37687345

RESUMO

Elevated carbon dioxide and drought are significant stressors in light of climate change. This study explores the interplay between elevated atmospheric CO2, drought stress, and plant physiological responses. Two Brassica oleracea varieties (cauliflowers and cabbage) were utilized as model plants. Our findings indicate that elevated CO2 accelerates assimilation rate decline during drought. The integrity of photosynthetic components influenced electron transport, potentially due to drought-induced nitrate reductase activation changes. While CO2 positively influenced photosynthesis and water-use efficiency during drought, recovery saw decreased stomatal conductance in high-CO2-grown plants. Drought-induced monoterpene emissions varied, influenced by CO2 concentration and species-specific responses. Drought generally increased polyphenols, with an opposing effect under elevated CO2. Flavonoid concentrations fluctuated with drought and CO2 levels, while chlorophyll responses were complex, with high CO2 amplifying drought's effects on chlorophyll content. These findings contribute to a nuanced understanding of CO2-drought interactions and their intricate effects on plant physiology.

14.
Mol Ther ; 19(8): 1457-67, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21343913

RESUMO

Finding suitable nonviral delivery vehicles for nucleic acid-based therapeutics is a landmark goal in gene therapy. Cell-penetrating peptides (CPPs) are one class of delivery vectors that has been exploited for this purpose. However, since CPPs use endocytosis to enter cells, a large fraction of peptides remain trapped in endosomes. We have previously reported that stearylation of amphipathic CPPs, such as transportan 10 (TP10), dramatically increases transfection of oligonucleotides in vitro partially by promoting endosomal escape. Therefore, we aimed to evaluate whether stearyl-TP10 could be used for the delivery of plasmids as well. Our results demonstrate that stearyl-TP10 forms stable nanoparticles with plasmids that efficiently enter different cell-types in a ubiquitous manner, including primary cells, resulting in significantly higher gene expression levels than when using stearyl-Arg9 or unmodified CPPs. In fact, the transfection efficacy of stearyl-TP10 almost reached the levels of Lipofectamine 2000 (LF2000), however, without any of the observed lipofection-associated toxicities. Most importantly, stearyl-TP10/plasmid nanoparticles are nonimmunogenic, mediate efficient gene delivery in vivo, when administrated intramuscularly (i.m.) or intradermally (i.d.) without any associated toxicity in mice.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos , Plasmídeos/metabolismo , Transfecção/métodos , Animais , Transporte Biológico , Linhagem Celular , Cricetinae , Cricetulus , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Endossomos/metabolismo , Terapia Genética/métodos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Ácidos Nucleicos/metabolismo
15.
Plants (Basel) ; 11(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35890439

RESUMO

Climate change is one of the main challenges for actual and future generations. Global warming affects plants and animals and is responsible for considerable crop loss. This study studied the influence of antagonist successive stresses, cold-heat and heat-cold, on two medicinal plants Ocimum basilicum L. and Salvia officinalis L. The photosynthetic parameters decreased for plants under the variation of subsequent stress. Net assimilation rates and stomatal conductance to water vapor are more affected in the case of plants under cold-heat consecutive stress than heat-cold successive stress. Emissions of volatile organic compounds have been enhanced for plants under successive stress when compared with control plants. Chlorophyll concentrations for plants under successive stress decreased for basil and sage plants. The total phenolic and flavonoid contents were not affected by the successive stresses when compared with the plants under only one type of treatment.

16.
Plants (Basel) ; 11(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35406953

RESUMO

Climate change will determine a sharp increase in carbon dioxide in the following years. To study the influence of elevated carbon dioxide on plants, we grew 13 different species and varieties from the Brassicaceae family at three carbon dioxide concentrations: 400, 800, and 1200 ppmv. The photosynthetic parameters (assimilation rate and stomatal conductance to water vapor) increase for all species. The emission of monoterpenes increases for plants grown at elevated carbon dioxide while the total polyphenols and flavonoids content decrease. The chlorophyll content is affected only for some species (such as Lipidium sativum), while the ß-carotene concentrations in the leaves were not affected by carbon dioxide.

17.
Antioxidants (Basel) ; 11(5)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35624672

RESUMO

The purpose of this study is to reveal the chemical and biochemical characteristics and the potential aromatherapy applications of the essential oil (EO) of Salvia officinalis (common sage) within a hospital environment. The chemical composition was determined by gas chromatography with mass spectrometry and ATR-FTIR spectroscopy. Three types of sage EOs were included in this study: two commercial oils and one oil obtained by in-house hydrodistillation. Based on the findings, these EOs were included in different chemotypes. The first two samples were similar to the most common chemotype (α-thujone > camphor > 1,8-cineole > ß-thujone), while the in-house sage EO revealed a high content of 1,8-cineole, borneol, α-thujone, similar to the Dalmatian type. The latter sample was selected to be evaluated for its antioxidant and medical effects, as borneol, a bicyclic monoterpene, is known as a substance with anesthetic and analgesic effects in traditional Asian medicine. The study suggests that the antioxidant capacity of the sage EO is modest (33.61% and 84.50% inhibition was determined by DPPH and ABTS assays, respectively), but also that the inhalation of sage EO with high borneol content by hospitalized patients could improve these patients' satisfaction.

18.
Colloids Surf B Biointerfaces ; 216: 112536, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35567806

RESUMO

Engineered nanomaterials are increasingly used in everyday life applications and, in consequence, significant amounts are being released into the environment. From soil, water, and air they can reach the organelles of edible plants, potentially impacting the food chain and human health. The potential environmental and health impact of these nanoscale materials is of public concern. TiO2 and ZnO are among the most significant nanomaterials in terms of production amounts. Our study aimed at evaluating the effects of large-scale TiO2 (~100 nm) and ZnO (~200 nm) nanoparticles on soybean plants grown in vitro. The effect of different concentrations of nanoparticles (10, 100, 1000 mg/L) was evaluated regarding plant morphology and metabolic changes. ZnO nanoparticles showed higher toxicity compared to TiO2 in the experimental set-up. Overall, elevated levels of chlorophylls and proteins were observed, as well as increased concentrations of ascorbic and dehydroascorbic acids. Also, the decreasing stomatal conductance to water vapor and net CO2 assimilation rate show higher plant stress levels. In addition, ZnO nanoparticle treatments severely affected plant growth, while TEM analysis revealed ultrastructural changes in chloroplasts and rupture of leaf cell walls. By combining ICP-OES and TEM results, we were able to show that the nanoparticles were metabolized, and their internalization in the soybean plant tissues occurred in ionic forms. This behavior most likely is the main driving force of nanoparticle toxicity.


Assuntos
Nanopartículas , Óxido de Zinco , Humanos , Nanopartículas/metabolismo , Glycine max , Titânio/toxicidade , Óxido de Zinco/química
19.
Bioconjug Chem ; 22(11): 2255-62, 2011 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-21978260

RESUMO

Cell-penetrating peptide based vehicles have been developed for the delivery of different payloads into the cells in culture and in animals. However, several biological features, among which is the tendency to trigger innate immune response, limit the development of highly efficient peptide-based drug delivery vectors. This study aims to evaluate the influence of transportan 10 (TP10) and its chemically modified derivatives, PepFects (PFs), on the innate immune response of the host system. PFs have shown high efficiency in nucleic acid delivery in vitro and in vivo; hence, the estimation of their possible toxic side effects would be of particular interest. In this study, we analyzed cytotoxic and immunogenic response of PF3, PF4, and PF6 peptides in monocytic leukemia and peripheral blood mononuclear cell lines. In comparison with amphipathic PFs, TP10, TAT, stearyl-(RxR)(4) peptides, and the most widely used transfection reagents Lipofectamine 2000 and Lipofectamine RNAiMAX were also analyzed in this study. IL-1ß, IL-18, and TNF-α cytokine release was detected using highly sensitive enzyme-linked immunosorbent assay (ELISA). Cell viability was detected by measuring the activity of cellular enzymes that reduce water-soluble tetrazolium salts to formazan dyes and apoptosis was evaluated by measuring the levels of caspase-1 and caspase-3/7 over untreated cells. All peptides were found to be nontoxic and nonimmunogenic in vitro at the concentrations of 10 µM and 5 µM, respectively, and at a dose of 5 mg/kg in vivo, suggesting that these CPPs exhibit a promising potential in the delivery of therapeutic molecules into the cell without risks of toxicity and inflammatory reactions.


Assuntos
Peptídeos Penetradores de Células/imunologia , Peptídeos Penetradores de Células/toxicidade , Portadores de Fármacos/toxicidade , Galanina/imunologia , Galanina/toxicidade , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/toxicidade , Venenos de Vespas/imunologia , Venenos de Vespas/toxicidade , Animais , Caspases/metabolismo , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/genética , Células Cultivadas , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Galanina/química , Humanos , Interleucina-18/imunologia , Interleucina-1beta/imunologia , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Lipopeptídeos/química , Lipopeptídeos/imunologia , Lipopeptídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão/química , Transfecção , Fator de Necrose Tumoral alfa/imunologia , Venenos de Vespas/química
20.
Artigo em Inglês | MEDLINE | ID: mdl-34063249

RESUMO

Benzene, toluene, and total BTEX (benzene, toluene, ethylbenzene, and xylene) concentrations registered for one year (2016) have been determined every month for one high-density traffic area. The assessment was performed in Arad City, Romania, to evaluate these pollutants and their influence on the inhabitants' health. The contaminants were sampled using a static sampling method and analyzed by gas chromatography coupled with mass spectrometry. Benzene was the most dominant among the BTEX compounds-the average concentrations ranged from 18.00 ± 1.32 µg m-3 in December to 2.47 ± 0.74 µg m-3 in August. The average toluene concentration over the year was 4.36 ± 2.42 µg m-3 (with a maximum of 9.60 ± 2.39 µg m-3 in November and a minimum of 1.04 ± 0.29 µg m-3 in May). The toluene/benzene ratio (T/B) was around 0.5, indicating substantial contributions from mobile sources (vehicles). The emission and accumulation of different aromatic compounds (especially benzene) could deteriorate the urban air quality. The lifetime cancer risk (LTCR) for benzene was found to be more than 10-5 in winter, including the inhabitants in the "probable cancer risk" category.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Atmosfera/análise , Benzeno/análise , Derivados de Benzeno/análise , Cidades , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Romênia , Tolueno/análise , Xilenos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA