Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
BMC Med ; 21(1): 158, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101178

RESUMO

BACKGROUND: C-type natriuretic peptide (CNP) is a known target for promoting growth and has been implicated as a therapeutic opportunity for the prevention and treatment of cardiovascular disease (CVD). This study aimed to explore the effect of CNP on CVD risk using the Mendelian randomization (MR) framework. METHODS: Instrumental variables mimicking the effects of pharmacological intervention on CNP were identified as uncorrelated genetic variants located in the genes coding for its primary receptors, natriuretic peptide receptors-2 and 3 (NPR2 and NPR3), that associated with height. We performed MR and colocalization analyses to investigate the effects of NPR2 signalling and NPR3 function on CVD outcomes and risk factors. MR estimates were compared to those obtained when considering height variants from throughout the genome. RESULTS: Genetically-proxied reduced NPR3 function was associated with a lower risk of CVD, with odds ratio (OR) 0.74 per standard deviation (SD) higher NPR3-predicted height, and 95% confidence interval (95% CI) 0.64-0.86. This effect was greater in magnitude than observed when considering height variants from throughout the genome. For CVD subtypes, similar MR associations for NPR3-predicted height were observed when considering the outcomes of coronary artery disease (0.75, 95% CI 0.60-0.92), stroke (0.69, 95% CI 0.50-0.95) and heart failure (0.77, 95% CI 0.58-1.02). Consideration of CVD risk factors identified systolic blood pressure (SBP) as a potential mediator of the NPR3-related CVD risk lowering. For stroke, we found that the MR estimate for NPR3 was greater in magnitude than could be explained by a genetically predicted SBP effect alone. Colocalization results largely supported the MR findings, with no evidence of results being driven by effects due to variants in linkage disequilibrium. There was no MR evidence supporting effects of NPR2 on CVD risk, although this null finding could be attributable to fewer genetic variants being identified to instrument this target. CONCLUSIONS: This genetic analysis supports the cardioprotective effects of pharmacologically inhibiting NPR3 receptor function, which is only partly mediated by an effect on blood pressure. There was unlikely sufficient statistical power to investigate the cardioprotective effects of NPR2 signalling.


Assuntos
Doenças Cardiovasculares , Acidente Vascular Cerebral , Humanos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Receptores do Fator Natriurético Atrial/genética , Análise da Randomização Mendeliana , Peptídeos Natriuréticos , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla
2.
Exp Physiol ; 108(9): 1172-1188, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37493451

RESUMO

The role of C-type natriuretic peptide (CNP) in the regulation of cardiac function in humans remains to be established as previous investigations have been confined to animal model systems. Here, we used well-characterized engineered cardiac tissues (ECTs) generated from human stem cell-derived cardiomyocytes and fibroblasts to study the acute effects of CNP on contractility. Application of CNP elicited a positive inotropic response as evidenced by increases in maximum twitch amplitude, maximum contraction slope and maximum calcium amplitude. This inotropic response was accompanied by a positive lusitropic response as demonstrated by reductions in time from peak contraction to 90% of relaxation and time from peak calcium transient to 90% of decay that paralleled increases in maximum contraction decay slope and maximum calcium decay slope. To establish translatability, CNP-induced changes in contractility were also assessed in rat ex vivo (isolated heart) and in vivo models. Here, the effects on force kinetics observed in ECTs mirrored those observed in both the ex vivo and in vivo model systems, whereas the increase in maximal force generation with CNP application was only detected in ECTs. In conclusion, CNP induces a positive inotropic and lusitropic response in ECTs, thus supporting an important role for CNP in the regulation of human cardiac function. The high degree of translatability between ECTs, ex vivo and in vivo models further supports a regulatory role for CNP and expands the current understanding of the translational value of human ECTs. NEW FINDINGS: What is the central question of this study? What are the acute responses to C-type natriuretic peptide (CNP) in human-engineered cardiac tissues (ECTs) on cardiac function and how well do they translate to matched concentrations in animal ex vivo and in vivo models? What is the main finding and its importance? Acute stimulation of ECTs with CNP induced positive lusitropic and inotropic effects on cardiac contractility, which closely reflected the changes observed in rat ex vivo and in vivo cardiac models. These findings support an important role for CNP in the regulation of human cardiac function and highlight the translational value of ECTs.


Assuntos
Peptídeo Natriurético Tipo C , Animais , Humanos , Ratos , Cálcio , Contração Miocárdica/fisiologia , Miócitos Cardíacos , Peptídeo Natriurético Tipo C/farmacologia
4.
Physiol Rev ; 91(1): 79-118, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21248163

RESUMO

Type 1 diabetes (T1D) is a chronic autoimmune disease in which destruction or damaging of the beta-cells in the islets of Langerhans results in insulin deficiency and hyperglycemia. We only know for sure that autoimmunity is the predominant effector mechanism of T1D, but may not be its primary cause. T1D precipitates in genetically susceptible individuals, very likely as a result of an environmental trigger. Current genetic data point towards the following genes as susceptibility genes: HLA, insulin, PTPN22, IL2Ra, and CTLA4. Epidemiological and other studies suggest a triggering role for enteroviruses, while other microorganisms might provide protection. Efficacious prevention of T1D will require detection of the earliest events in the process. So far, autoantibodies are most widely used as serum biomarker, but T-cell readouts and metabolome studies might strengthen and bring forward diagnosis. Current preventive clinical trials mostly focus on environmental triggers. Therapeutic trials test the efficacy of antigen-specific and antigen-nonspecific immune interventions, but also include restoration of the affected beta-cell mass by islet transplantation, neogenesis and regeneration, and combinations thereof. In this comprehensive review, we explain the genetic, environmental, and immunological data underlying the prevention and intervention strategies to constrain T1D.


Assuntos
Diabetes Mellitus Tipo 1/genética , Animais , Ensaios Clínicos como Assunto , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/terapia , Predisposição Genética para Doença , Humanos , Estado Pré-Diabético/diagnóstico , Prevenção Primária
5.
J Autoimmun ; 84: 65-74, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28711285

RESUMO

Immunotherapy for type 1 diabetes (T1D) has previously focused on suppressing the autoimmune response against pancreatic beta cells to preserve endogenous insulin production and regulate glucose levels. With increased attention toward combination therapy strategies, studies indicate the multifunctional cytokine interleukin-21 (IL-21) may be a suitable target as an immuno-modulatory arm, while glucagon-like peptide-1 receptor (GLP-1R) agonists may be appropriate as a beta cell protective arm in combination therapy for T1D. We report here that treatment with anti-IL-21 monoclonal antibody delays diabetes onset in the spontaneous non-obese diabetic (NOD) and NOD.scid adoptive transfer models, while its effect in reversing recent-onset hyperglycemia is limited. However, the combination of anti-IL-21 plus the GLP-1R agonist liraglutide is effective in reversing established disease compared to either monotherapy in both the NOD and rat insulin promotor-lymphocytic choriomeningitis virus glycoprotein (RIP-LCMV-GP) models of autoimmune diabetes. Enhanced efficacy is particularly evident in severely hyperglycemic mice, with return to normoglycemia remaining stable for the majority of mice even after therapy is withdrawn. Importantly, increased beta cell proliferation does not appear to be the predominant mechanism. In conclusion, combination therapy with anti-IL-21 and liraglutide is able to consistently reverse disease in mouse models of T1D. The observed effects rival the most effective experimental disease-modifying treatments tested in preclinical studies.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Diabetes Mellitus Tipo 1/terapia , Hiperglicemia/terapia , Imunoterapia/métodos , Células Secretoras de Insulina/imunologia , Interleucinas/imunologia , Liraglutida/uso terapêutico , Animais , Diabetes Mellitus Tipo 1/imunologia , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Humanos , Hiperglicemia/imunologia , Insulina/genética , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos
6.
Diabetes Obes Metab ; 19(5): 705-712, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28094469

RESUMO

AIMS: Glucagon-like peptide-1 (GLP-1) is an incretin hormone which stimulates insulin release and inhibits glucagon secretion from the pancreas in a glucose-dependent manner. Incretin-based therapies, consisting of GLP-1 receptor (GLP-1R) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors, are used for the treatment of type 2 diabetes (T2D). Immunohistochemical studies for GLP-1R expression have been hampered previously by the use of unspecific polyclonal antibodies. This study aimed to assess the expression levels of GLP-1R in a set of T2D donor samples obtained via nPOD. METHODS: This study used a new monoclonal antibody to assess GLP-1R expression in pancreatic tissue from 23 patients with T2D, including 7 with a DPP-4 inhibitor and 1 with a history of GLP-1R agonist treatment. A software-based automated image analysis algorithm was used for quantitating intensities and area fractions of GLP-1R positive compartments. RESULTS: The highest intensity GLP-1R immunostaining was seen in beta-cells in islets (average signal intensity, 76.1 [±8.1]). GLP-1R/insulin double-labelled single cells or small clusters of cells were also frequently located within or in close vicinity of ductal epithelium in all samples and with the same GLP-1R immunostaining intensity as found in beta-cells in islets. In the exocrine pancreas a large proportion of acinar cells expressed GLP-1R with a 3-fold lower intensity of immunoreactivity as compared to beta-cells (average signal intensity 25.5 [±3,3]). Our studies did not unequivocally demonstrate GLP-1R immunoreactivity on normal-appearing ductal epithelium. Pancreatic intraepithelial neoplasia (PanINs; a form of non-invasive pancreatic ductular neoplasia) was seen in most samples, and a minority of these expressed low levels of GLP-1R. CONCLUSION: These data confirm the ubiquity of early stage PanIN lesions in patients with T2D and do not support the hypothesis that incretin-based therapies are associated with progression towards the more advanced stage PanIN lesions.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células Secretoras de Insulina/metabolismo , Pâncreas/metabolismo , Adolescente , Adulto , Idoso , Anticorpos Monoclonais , Especificidade de Anticorpos , Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Feminino , Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Humanos , Hipoglicemiantes/uso terapêutico , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Incretinas/uso terapêutico , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/patologia , Masculino , Pessoa de Meia-Idade , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Bancos de Tecidos , Adulto Jovem
7.
Clin Immunol ; 164: 28-33, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26821303

RESUMO

Studies have shown oral insulin prevents type 1 diabetes (T1D) in mouse models, however human trials were inconclusive. We tested the ability of different insulins to prevent T1D in non-obese diabetic mice. Mice received oral insulin or PBS twice weekly and disease was monitored. Contrary to previous studies, no insulin tested showed significant ability to prevent T1D, nor did testing of linked suppression in a delayed type hypersensitivity model have reproducible effect. To investigate delivery of antigen within the GI tract, blue dye was fed to mice. Dye traveled 5-8 cm from stomach to small intestine within 10s, suggesting orally administered antigen may not get digested in the stomach in mice. Insulin incubated with jejunum extracts was instantly digested. Thus, in humans large doses of insulin may be required to achieve tolerance as antigen may be more vulnerable to digestion in the stomach even before reaching the small intestine.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Administração Oral , Animais , Antígenos/imunologia , Glicemia/análise , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Tipo 1/sangue , Feminino , Hemocianinas/imunologia , Humanos , Hipersensibilidade Tardia/imunologia , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/uso terapêutico , Tolerância Imunológica , Insulina/farmacocinética , Insulina/uso terapêutico , Mucosa Intestinal/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Suínos
8.
J Autoimmun ; 59: 61-6, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25772283

RESUMO

Type 1 diabetes (T1D) is characterized by the immune-mediated destruction of pancreatic beta cells leading to inadequate glycemic control. Trials with immunomodulatory monotherapies have shown that the disease course can in principle be altered. The observed preservation of endogenous insulin secretion however is typically transient and chronic treatment is often associated with significant side effects. Here we combined anti-CD3 with the Hsp60 peptide p277, two drugs that have been evaluated in Phase 3 trials, to test for enhanced efficacy. Female NOD mice with recent onset diabetes were given 5 µg anti-CD3 i.v., on three consecutive days in combination with 100 µg of p277 peptide in IFA s.c., once weekly for four weeks. Anti-CD3 alone restored normoglycemia in 44% of the mice while combination therapy with anti-CD3 and p277 induced stable remission in 83% of mice. The observed increase in protection occurred only in part through TLR2 signaling and was characterized by increased Treg numbers and decreased insulitis. These results have important implications for the design of combination therapies for the treatment of T1D.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Chaperonina 60/administração & dosagem , Diabetes Mellitus Tipo 1/terapia , Quimioterapia Combinada , Imunoterapia/métodos , Fragmentos de Peptídeos/administração & dosagem , Linfócitos T Reguladores/imunologia , Receptor 2 Toll-Like/metabolismo , Animais , Complexo CD3/imunologia , Proliferação de Células , Diabetes Mellitus Tipo 1/imunologia , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD
10.
J Pathol ; 230(1): 1-3, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23389883

RESUMO

Type 1 diabetes (T1D) is caused by the destruction of insulin-producing pancreatic ß cells by the patient's immune system. While the underlying genetics and immunopathology are fairly well characterized, the environmental trigger remains unidentified. Numerous studies have centred on the role of enteroviruses as aetiological factors that could initiate or accelerate T1D development. The most convincing evidence to date consists of an array of reports documenting the presence of enteroviral nucleic acids in peripheral blood at diagnosis. A prominent hypothesis is that enteroviruses may infect the pancreatic islets and thus be responsible for the islet-specific up-regulation of MHC class I that is commonly observed, possibly enabling T cell recognition and cytotoxicity. Past immunohistochemical studies have indeed shown that antibodies binding the enteroviral capsid protein VP1 preferentially stain the pancreatic ß cells from diabetic individuals. New data now indicate that the VP1 antibody used in these studies cross-reacts with mitochondrial proteins.


Assuntos
Anticorpos/imunologia , Proteínas do Capsídeo/imunologia , Creatina Quinase/imunologia , Diabetes Mellitus Tipo 1/imunologia , Infecções por Enterovirus/imunologia , Enterovirus/imunologia , Ilhotas Pancreáticas/imunologia , ATPases Mitocondriais Próton-Translocadoras/imunologia , Humanos
11.
Clin Immunol ; 149(3): 345-55, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23490422

RESUMO

Type 1 diabetes (T1D) results from an aberrant immunological response against the insulin-producing beta cells in the islets of the pancreas. The ideal therapy would restore immune balance in a safe and lasting fashion, stopping the process of beta cell decay. The efficacy of immune suppressive agents such as cyclosporin underscores the notion that T1D can in principle be prevented, albeit at an unacceptable long-term safety risk. Immune modulatory drugs such as monoclonal anti-CD3 antibody, on the other hand, have recently had rather disappointing results in phase 3 trials, possibly due to inadequate dosing or choice of inappropriate endpoints. Therefore, it is argued that striking the right balance between safety and efficacy, together with careful trial design, will be paramount in preventing T1D. Here we outline the concept of antigen-specific tolerization as a strategy to safely induce long-term protection against T1D, focusing on available clinical trial data, key knowledge gaps and potential future directions.


Assuntos
Autoantígenos/imunologia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Células Secretoras de Insulina/efeitos dos fármacos , Anticorpos Monoclonais/uso terapêutico , Autoantígenos/metabolismo , Complexo CD3/imunologia , Complexo CD3/metabolismo , Chaperonina 60/uso terapêutico , Ensaios Clínicos Fase III como Assunto , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/prevenção & controle , Glutamato Descarboxilase/uso terapêutico , Humanos , Tolerância Imunológica , Insulina/imunologia , Insulina/metabolismo , Insulina/uso terapêutico , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/patologia , Fragmentos de Peptídeos/uso terapêutico , Precursores de Proteínas/uso terapêutico , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/patologia
12.
JHEP Rep ; 5(5): 100693, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37122688

RESUMO

Background & Aims: Non-alcoholic fatty liver disease (NAFLD) has a prevalence of ∼25% worldwide, with significant public health consequences yet few effective treatments. Human genetics can help elucidate novel biology and identify targets for new therapeutics. Genetic variants in mitochondrial amidoxime-reducing component 1 (MTARC1) have been associated with NAFLD and liver-related mortality; however, its pathophysiological role and the cell type(s) mediating these effects remain unclear. We aimed to investigate how MTARC1 exerts its effects on NAFLD by integrating human genetics with in vitro and in vivo studies of mARC1 knockdown. Methods: Analyses including multi-trait colocalisation and Mendelian randomisation were used to assess the genetic associations of MTARC1. In addition, we established an in vitro long-term primary human hepatocyte model with metabolic readouts and used the Gubra Amylin NASH (GAN)-diet non-alcoholic steatohepatitis mouse model treated with hepatocyte-specific N-acetylgalactosamine (GalNAc)-siRNA to understand the in vivo impacts of MTARC1. Results: We showed that genetic variants within the MTARC1 locus are associated with liver enzymes, liver fat, plasma lipids, and body composition, and these associations are attributable to the same causal variant (p.A165T, rs2642438 G>A), suggesting a shared mechanism. We demonstrated that increased MTARC1 mRNA had an adverse effect on these traits using Mendelian randomisation, implying therapeutic inhibition of mARC1 could be beneficial. In vitro mARC1 knockdown decreased lipid accumulation and increased triglyceride secretion, and in vivo GalNAc-siRNA-mediated knockdown of mARC1 lowered hepatic but increased plasma triglycerides. We found alterations in pathways regulating lipid metabolism and decreased secretion of 3-hydroxybutyrate upon mARC1 knockdown in vitro and in vivo. Conclusions: Collectively, our findings from human genetics, and in vitro and in vivo hepatocyte-specific mARC1 knockdown support the potential efficacy of hepatocyte-specific targeting of mARC1 for treatment of NAFLD. Impact and implications: We report that genetically predicted increases in MTARC1 mRNA associate with poor liver health. Furthermore, knockdown of mARC1 reduces hepatic steatosis in primary human hepatocytes and a murine NASH model. Together, these findings further underscore the therapeutic potential of targeting hepatocyte MTARC1 for NAFLD.

13.
J Immunol ; 185(3): 1949-58, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20592286

RESUMO

The TNF superfamily member homologous to lymphotoxins, exhibits inducible expression, and competes with HSV glycoprotein D for herpesvirus entry mediator (HVEM), a receptor expressed by T lymphocytes (LIGHT) [TNF superfamily (SF)-14], is a key cytokine that activates T cells and dendritic cells and is implicated as a mediator of inflammatory, metabolic, and malignant diseases. LIGHT engages the lymphotoxin-beta receptor (LTbetaR) and HVEM (TNFRSF14), but is competitively limited in activating these receptors by soluble decoy receptor-3 (DcR3; TNFRSF6B). Two variants in the human LIGHT alter the protein at E214K (rs344560) in the receptor-binding domain and S32L (rs2291667) in the cytosolic domain; however, the functional impact of these polymorphisms is unknown. A neutralizing Ab failed to bind the LIGHT-214K variant, indicating this position as a part of the receptor-binding region. Relative to the predominant reference variant S32/E214, the other variants showed altered avidity with LTbetaR and less with HVEM. Heterotrimers of the LIGHT variants decreased binding avidity to DcR3 and minimized the inhibitory effect of DcR3 toward LTbetaR-induced activation of NF-kappaB. In patients with immune-mediated inflammatory diseases, such as rheumatoid arthritis, DcR3 protein levels were significantly elevated. Immunohistochemistry revealed synoviocytes as a significant source of DcR3 production, and DcR3 hyperexpression is controlled by posttranscriptional mechanisms. The increased potential for LTbetaR signaling, coupled with increased bioavailability due to lower DcR3 avidity, provides a mechanism of how polymorphic variants in LIGHT could contribute to the pathogenesis of inflammatory diseases.


Assuntos
Variação Genética/imunologia , Polimorfismo de Nucleotídeo Único/imunologia , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Sequência de Aminoácidos , Disponibilidade Biológica , Técnicas de Cocultura , Células HeLa , Humanos , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/fisiologia , Modelos Imunológicos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , NF-kappa B/antagonistas & inibidores , Ligação Proteica/genética , Ligação Proteica/imunologia , Membro 14 de Receptores do Fator de Necrose Tumoral/fisiologia , Membro 6b de Receptores do Fator de Necrose Tumoral/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/fisiologia
14.
Diabetes Metab Res Rev ; 27(8): 746-54, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22069254

RESUMO

BACKGROUND: Recent reports have established the notion that many patients with longstanding type 1 diabetes (T1D) possess a remnant population of insulin-producing beta cells. It remains questionable, however, whether these surviving cells can physiologically sense and respond to glucose stimuli. METHODS: Frozen pancreatic sections from non-diabetic donors (n=8), type 2 diabetic patients (n=4), islet autoantibody-positive non-diabetic patients (n=3), type 1 diabetic patients (n=10) and one case of gestational diabetes were obtained via the network for Pancreatic Organ Donors. All longstanding T1D samples were selected based on the detection of insulin-producing beta cells in the pancreas by immunohistochemistry. RNA was isolated from all sections followed by cDNA preparation and quantitative real-time polymerase chain reaction for insulin, glucose transporter 1 (GLUT1), GLUT2 and GLUT3. Finally, immunofluorescent staining was performed on consecutive sections for all four of these markers and a comparison was made between the expression of GLUT2 in humans versus NOD mice. RESULTS: In contrast to islets from the most widely used T1D model, the NOD mouse, human islets predominantly express GLUT1 and, to a much lesser extent, GLUT3 on their surface instead of GLUT2. Relative expression levels of these receptors do not significantly change in the context of the various (pre-)diabetic conditions studied. Moreover, in both species preservation of GLUT expression was observed even under conditions of substantial leucocyte infiltration or decades of T1D duration. CONCLUSIONS: These data suggest that despite being subjected to multiple years of physiological stress, the remaining beta-cell population in longstanding T1D patients retains a capacity to sense glucose via its GLUTs.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/biossíntese , Células Secretoras de Insulina/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Transportador de Glucose Tipo 1/biossíntese , Transportador de Glucose Tipo 2/biossíntese , Humanos , Camundongos , Camundongos Endogâmicos NOD
15.
J Immunol ; 182(4): 2213-20, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19201875

RESUMO

Exosomes are small membrane vesicles of endocytic origin that are secreted by most cells in culture, but are also present in serum. They contain a wide array of protein ligands on their surface, which has led to the hypothesis that they might mediate intercellular communication. Indeed, data support that exosomes can transfer Ags to dendritic cells (DC), and, interestingly, that these DC can subsequently induce T cell priming or tolerance. We have investigated whether this concept can be expanded to antiviral immunity. We isolated exosomes from supernatant of cultured bone marrow-derived DC (BMDC) that were infected with lymphocytic choriomeningitis virus (LCMV) or loaded with an immunodominant LCMV peptide, and characterized them by flow cytometry upon binding to beads. We then incubated the exosome preparations with BMDC and looked at their potential to activate LCMV gp33-specific naive and memory CD8 T cells. We found that exosomes do not significantly contribute to CD8 T cell cross-priming in vitro. Additionally, exosomes derived from in vitro-infected BMDC did not exhibit significant in vivo priming activity, as evidenced by the lack of protection following exosome vaccination. Thus, DC-derived exosomes do not appear to contribute significantly to CTL priming during acute LCMV infection.


Assuntos
Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Exossomos/imunologia , Coriomeningite Linfocítica/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Células da Medula Óssea/imunologia , Células Dendríticas/virologia , Exossomos/virologia , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Linfócitos T Citotóxicos/virologia
16.
Curr Opin Endocrinol Diabetes Obes ; 28(4): 411-418, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34101651

RESUMO

PURPOSE OF REVIEW: Update on antigen-specific immunotherapy (ASIT) in type 1 diabetes (T1D) with focus on deoxyribonucleic acid (DNA)-induced immunization and the current obstacles to further research and clinical realization. RECENT FINDINGS: In T1D, immune system imbalances together with malfunctioning islet-specific processes cause autoreactive immune cells to destroy beta cells in the islets. ASIT may restore self-tolerance; however, the approach has yet to fully meet its promise and may require co-administration of antigen (preproinsulin) and suitable immune response modifiers. SUMMARY: A self-tolerant immune system may be regained using ASIT where T effector cells are repressed and/or T regulatory cells are induced. Administration of exogenous antigens has been safe in T1D. Conversely, adequate and lasting beta cell preservation has yet to be tested in sufficiently large clinical trials in suitable patients and may require targeting of multiple parts of the immunopathophysiology using combination therapies. DNA-based induction of native antigen expression to ensure important posttranscriptional modifications and presentation to the immune system together with tolerance-enhancing immune response modifiers (i.e., cytokines) may be more efficacious than exogenous antigens given alone. Progress is limited mainly by the scarcity of validated biomarkers to track the effects of ASIT in T1D.


Assuntos
Antígenos , Diabetes Mellitus Tipo 1 , Imunoterapia , Células Secretoras de Insulina , Antígenos/administração & dosagem , Antígenos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/terapia , Humanos , Tolerância Imunológica/efeitos dos fármacos , Tolerância Imunológica/imunologia , Imunoterapia/métodos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/imunologia , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia
17.
Lancet Diabetes Endocrinol ; 9(4): 212-224, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33662334

RESUMO

BACKGROUND: Type 1 diabetes is characterised by progressive loss of functional ß-cell mass, necessitating insulin treatment. We aimed to investigate the hypothesis that combining anti-interleukin (IL)-21 antibody (for low-grade and transient immunomodulation) with liraglutide (to improve ß-cell function) could enable ß-cell survival with a reduced risk of complications compared with traditional immunomodulation. METHODS: This randomised, parallel-group, placebo-controlled, double-dummy, double-blind, phase 2 trial was done at 94 sites (university hospitals and medical centres) in 17 countries. Eligible participants were adults aged 18-45 years with recently diagnosed type 1 diabetes and residual ß-cell function. Individuals with unstable type 1 diabetes (defined by an episode of severe diabetic ketoacidosis within 2 weeks of enrolment) or active or latent chronic infections were excluded. Participants were randomly assigned (1:1:1:1), with stratification by baseline stimulated peak C-peptide concentration (mixed-meal tolerance test [MMTT]), to the combination of anti-IL-21 and liraglutide, anti-IL-21 alone, liraglutide alone, or placebo, all as an adjunct to insulin. Investigators, participants, and funder personnel were masked throughout the treatment period. The primary outcome was the change in MMTT-stimulated C-peptide concentration at week 54 (end of treatment) relative to baseline, measured via the area under the concentration-time curve (AUC) over a 4 h period for the full analysis set (intention-to-treat population consisting of all participants who were randomly assigned). After treatment cessation, participants were followed up for an additional 26-week off-treatment observation period. This trial is registered with ClinicalTrials.gov, NCT02443155. FINDINGS: Between Nov 10, 2015, and Feb 27, 2019, 553 adults were assessed for eligibility, of whom 308 were randomly assigned to receive either anti-IL-21 plus liraglutide, anti-IL-21, liraglutide, or placebo (77 assigned to each group). Compared with placebo (ratio to baseline 0·61, 39% decrease), the decrease in MMTT-stimulated C-peptide concentration from baseline to week 54 was significantly smaller with combination treatment (0·90, 10% decrease; estimated treatment ratio 1·48, 95% CI 1·16-1·89; p=0·0017), but not with anti-IL-21 alone (1·23, 0·97-1·57; p=0·093) or liraglutide alone (1·12, 0·87-1·42; p=0·38). Despite greater insulin use in the placebo group, the decrease in HbA1c (a key secondary outcome) at week 54 was greater with all active treatments (-0·50 percentage points) than with placebo (-0·10 percentage points), although the differences versus placebo were not significant. The effects diminished upon treatment cessation. Changes in immune cell subsets across groups were transient and mild (<10% change over time). The most frequently reported adverse events included gastrointestinal disorders, in keeping with the known side-effect profile of liraglutide. The rate of hypoglycaemic events did not differ significantly between active treatment groups and placebo, with an exception of a lower rate in the liraglutide group than in the placebo group during the treatment period. No events of diabetic ketoacidosis were observed. One participant died while on liraglutide (considered unlikely to be related to trial treatment) in connection with three reported adverse events (hypoglycaemic coma, pneumonia, and brain oedema). INTERPRETATION: The combination of anti-IL-21 and liraglutide could preserve ß-cell function in recently diagnosed type 1 diabetes. The efficacy of this combination appears to be similar to that seen in trials of other disease-modifying interventions in type 1 diabetes, but with a seemingly better safety profile. Efficacy and safety should be further evaluated in a phase 3 trial programme. FUNDING: Novo Nordisk.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Linfócitos B/fisiologia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Interleucinas/antagonistas & inibidores , Liraglutida/administração & dosagem , Adulto , Linfócitos B/efeitos dos fármacos , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/diagnóstico , Método Duplo-Cego , Quimioterapia Combinada , Feminino , Seguimentos , Humanos , Interleucinas/sangue , Masculino , Adulto Jovem
18.
Diabetes ; 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34957480

RESUMO

Type 1 diabetes is an autoimmune disease in which insulin-secreting ß-cells are destroyed, leading to a life-long dependency on exogenous insulin. There are no approved disease-modifying therapies available, and future immunotherapies would need to avoid generalized immune suppression. We developed a novel plasmid expressing preproinsulin2 and a combination of immune-modulatory cytokines (transforming growth factor-beta-1, interleukin [IL] 10 and IL-2) capable of near-complete prevention of autoimmune diabetes in non-obese diabetic mice. Efficacy depended on preproinsulin2, suggesting antigen-specific tolerization, and on the cytokine combination encoded. Diabetes suppression was achieved following either intramuscular or subcutaneous injections. Intramuscular plasmid treatment promoted increased peripheral levels of endogenous IL-10 and modulated myeloid cell types without inducing global immunosuppression. To prepare for first-in-human studies, the plasmid was modified to allow for selection without the use of antibiotic resistance; this modification had no impact on efficacy. This pre-clinical study demonstrates that this multi-component, plasmid-based antigen-specific immunotherapy holds potential for inducing self-tolerance in persons at risk of developing type 1 diabetes. Importantly, the study also informs on relevant cytokine and immune cell biomarkers that may facilitate clinical trials. This therapy is currently being tested for safety and tolerability in a phase 1 trial (ClinicalTrials.gov Identifier: NCT04279613).

19.
Diabetes ; 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389610

RESUMO

Type 1 diabetes is an autoimmune disease in which insulin-secreting ß-cells are destroyed, leading to a life-long dependency on exogenous insulin. There are no approved disease-modifying therapies available, and future immunotherapies would need to avoid generalized immune suppression. We developed a novel plasmid expressing preproinsulin2 and a combination of immune-modulatory cytokines (transforming growth factor-beta-1, interleukin [IL] 10 and IL-2) capable of near-complete prevention of autoimmune diabetes in non-obese diabetic mice. Efficacy depended on preproinsulin2, suggesting antigen-specific tolerization, and on the cytokine combination encoded. Diabetes suppression was achieved following either intramuscular or subcutaneous injections. Intramuscular plasmid treatment promoted increased peripheral levels of endogenous IL-10 and modulated myeloid cell types without inducing global immunosuppression. To prepare for first-in-human studies, the plasmid was modified to allow for selection without the use of antibiotic resistance; this modification had no impact on efficacy. This pre-clinical study demonstrates that this multi-component, plasmid-based antigen-specific immunotherapy holds potential for inducing self-tolerance in persons at risk of developing type 1 diabetes. Importantly, the study also informs on relevant cytokine and immune cell biomarkers that may facilitate clinical trials. This therapy is currently being tested for safety and tolerability in a phase 1 trial (ClinicalTrials.gov Identifier: NCT04279613).

20.
J Autoimmun ; 35(4): 404-13, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20932718

RESUMO

It is not fully understood how the expression level of autoantigens in beta cells impacts autoimmune diabetes (T1D) development. Earlier studies using ovalbumin and also insulin had shown that secreted antigens could enhance diabetes development through facilitated presentation by antigen presenting cells. Here we sought to determine how the expression level of a membrane bound, non-secreted or cross-presented neo-antigen, the glycoprotein (GP) of lymphocytic choriomeningitis virus (LCMV), would influence T1D. We found that an RIP-LCMV transgenic mouse line exhibiting higher levels of beta cell GP expression developed more severe diabetes after LCMV infection or transfer of high numbers of activated autoreactive T cells. Importantly, all beta cells were lost and a significant increase in morbidity and mortality from T1D was noted. Insulitis and accumulation of autoaggressive CD8 cells was more profound in the RIP-LCMV-GP high-expressor line. Interestingly, the additional introduction of neo-antigen-specific CD4(+) helper or regulatory T cells was able to influence diabetogenesis positively or negatively. We conclude that a higher degree of autoantigen expression results in increased diabetes susceptibility. Therefore, autoantigens such as insulin that are expressed at higher levels in beta cells might have a more profound impact on diabetes pathogenesis.


Assuntos
Infecções por Arenaviridae/imunologia , Linfócitos T CD8-Positivos/metabolismo , Diabetes Mellitus Tipo 1/imunologia , Células Secretoras de Insulina/metabolismo , Vírus da Coriomeningite Linfocítica/fisiologia , Transferência Adotiva , Animais , Antígenos Virais/biossíntese , Antígenos Virais/genética , Infecções por Arenaviridae/genética , Infecções por Arenaviridae/fisiopatologia , Autoantígenos/biossíntese , Autoantígenos/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Linfócitos T CD8-Positivos/transplante , Células Cultivadas , Apresentação Cruzada/genética , Citotoxicidade Imunológica/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/fisiopatologia , Progressão da Doença , Glicoproteínas/biossíntese , Glicoproteínas/genética , Células Secretoras de Insulina/patologia , Ativação Linfocitária/genética , Vírus da Coriomeningite Linfocítica/patogenicidade , Camundongos , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA