Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Biomed Eng ; 7(2): 94-109, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36581694

RESUMO

Decellularized extracellular matrix in the form of patches and locally injected hydrogels has long been used as therapies in animal models of disease. Here we report the safety and feasibility of an intravascularly infused extracellular matrix as a biomaterial for the repair of tissue in animal models of acute myocardial infarction, traumatic brain injury and pulmonary arterial hypertension. The biomaterial consists of decellularized, enzymatically digested and fractionated ventricular myocardium, localizes to injured tissues by binding to leaky microvasculature, and is largely degraded in about 3 d. In rats and pigs with induced acute myocardial infarction followed by intracoronary infusion of the biomaterial, we observed substantially reduced left ventricular volumes and improved wall-motion scores, as well as differential expression of genes associated with tissue repair and inflammation. Delivering pro-healing extracellular matrix by intravascular infusion post injury may provide translational advantages for the healing of inflamed tissues 'from the inside out'.


Assuntos
Materiais Biocompatíveis , Infarto do Miocárdio , Ratos , Suínos , Animais , Miocárdio/metabolismo , Infarto do Miocárdio/terapia , Hidrogéis , Matriz Extracelular/metabolismo
2.
J Biol Chem ; 278(12): 10087-93, 2003 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-12531899

RESUMO

Regulator of G-protein signaling (RGS) proteins are GTPase activating proteins (GAPs) of heterotrimeric G-proteins that alter the amplitude and kinetics of receptor-promoted signaling. In this study we defined the G-protein alpha-subunit selectivity of purified Sf9 cell-derived R7 proteins, a subfamily of RGS proteins (RGS6, -7, -9, and -11) containing a Ggamma-like (GGL) domain that mediates dimeric interaction with Gbeta(5). Gbeta(5)/R7 dimers stimulated steady state GTPase activity of Galpha-subunits of the G(i) family, but not of Galpha(q) or Galpha(11), when added to proteoliposomes containing M2 or M1 muscarinic receptor-coupled G-protein heterotrimers. Concentration effect curves of the Gbeta(5)/R7 proteins revealed differences in potencies and efficacies toward Galpha-subunits of the G(i) family. Although all four Gbeta(5)/R7 proteins exhibited similar potencies toward Galpha(o), Gbeta(5)/RGS9 and Gbeta(5)/RGS11 were more potent GAPs of Galpha(i1), Galpha(i2), and Galpha(i3) than were Gbeta(5)/RGS6 and Gbeta(5)/RGS7. The maximal GAP activity exhibited by Gbeta(5)/RGS11 was 2- to 4-fold higher than that of Gbeta(5)/RGS7 and Gbeta(5)/RGS9, with Gbeta(5)/RGS6 exhibiting an intermediate maximal GAP activity. Moreover, the less efficacious Gbeta(5)/RGS7 and Gbeta(5)/RGS9 inhibited Gbeta(5)/RGS11-stimulated GTPase activity of Galpha(o). Therefore, R7 family RGS proteins are G(i) family-selective GAPs with potentially important differences in activities.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/fisiologia , Proteínas Ativadoras de GTPase/fisiologia , Proteínas RGS/fisiologia , Animais , Guanosina Trifosfato/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/química , Proteínas Heterotriméricas de Ligação ao GTP/fisiologia , Hidrólise , Spodoptera
3.
Mol Pharmacol ; 64(5): 1210-6, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14573771

RESUMO

The human P2Y12 receptor (P2Y12-R) is a member of the G protein coupled P2Y receptor family, which is intimately involved in platelet physiology. We describe here the purification and functional characterization of recombinant P2Y12-R after high-level expression from a baculovirus in Sf9 insect cells. Purified P2Y12-R, Gbeta1gamma2, and various Galpha-subunits were reconstituted in lipid vesicles, and steady-state GTPase activity was quantified. GTP hydrolysis in proteoliposomes formed with purified P2Y12-R and Galphai2beta1gamma2 was stimulated by addition of either 2-methylthio-ADP (2MeSADP) or RGS4 and was markedly enhanced by their combined presence. 2MeSADP was the most potent agonist (EC50 = 80 nM) examined, whereas ADP, the cognate agonist of the P2Y12-R, was 3 orders of magnitude less potent. ATP had no effect alone but inhibited the action of 2MeSADP; therefore, ATP is a relatively low-affinity antagonist of the P2Y12-R. The G protein selectivity of the P2Y12-R was examined by reconstitution with various G protein alpha-subunits in heterotrimeric form with Gbeta1gamma2. The most robust coupling of the P2Y12-R was to Galphai2, but effective coupling also occurred to Galphai1 and Galphai3. In contrast, little or no coupling occurred to Galphao or Galphaq. These results illustrate that the signaling properties of the P2Y12-R can be studied as a purified protein under conditions that circumvent the complications that occur in vivo because of nucleotide metabolism and interconversion as well as nucleotide release.


Assuntos
Proteínas de Membrana , Receptores Purinérgicos P2/isolamento & purificação , Difosfato de Adenosina/metabolismo , Animais , Células COS , Chlorocebus aethiops , Humanos , Receptores Purinérgicos P2/fisiologia , Receptores Purinérgicos P2Y12 , Transfecção
4.
Mol Pharmacol ; 62(5): 1249-57, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12391289

RESUMO

2-Chloro-N(6)-methyl-(N )-methanocarba-2'-deoxyadenosine-3',5'- bisphosphate (MRS2279) was developed previously as a selective high-affinity, non-nucleotide P2Y(1) receptor (P2Y1-R) antagonist (J Med Chem 43:829-842, 2002; Br J Pharmacol 135:2004-2010, 2002). We have taken advantage of the N(6)-methyl substitution in the adenine base to incorporate [(3)H]methylamine into the synthesis of [(3)H]MRS2279 to high (89 Ci/mmol) specific radioactivity and have used this molecule as a radioligand for the P2Y1-R. [(3)H]MRS2279 bound to membranes from Sf9 insect cells expressing recombinant human P2Y1-R but not to membranes from wild-type Sf9 cells or Sf9 cells expressing high levels of recombinant P2Y(2) or P2Y(12) receptors. Equilibrium binding of [(3)H]MRS2279 to P2Y1-R expressed in Sf9 membranes was with a high affinity (K(d) = 8 nM) essentially identical to the apparent affinity of MRS2279 determined previously in studies of P2Y1-R-promoted inositol phosphate accumulation or platelet aggregation. A kinetically derived K(d) calculated from independent determinations of the rate constants of association (7.15 x 10(7) M(-1) min(-1)) and dissociation (0.72 min(-1)) of [(3)H]MRS2279 also was in good agreement with the K(d) derived from equilibrium binding studies. Competition binding assays with [(3)H]MRS2279 and P2Y1-R expressing Sf9 cell membranes revealed K(i) values for the P2Y1-R antagonists MRS2279 (K(i) = 13 nM), N(6)-methyl-2'-deoxyadenosine-3',5'-bisphosphate (MRS2179; K(i) = 84 nM), adenosine-3', 5'-bisphosphate (K(i)=900 nM), and pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (K(i) = 6 microM) that were in good agreement with antagonist activities of these molecules previously determined at the P2Y1-R in intact tissues. Moreover, [(3)H]MRS2279 also bound with high affinity (K(d) = 4-8 nM) to Chinese hamster ovary (CHO) or 1321N1 human astrocytoma cells stably expressing the human P2Y1-R, but specific binding was not observed in wild-type CHO or 1321N1 cells. [(3)H]MRS2279 bound with high affinity (K(d) = 16 nM) to a binding site on out-dated human platelets (5-35 receptors/platelet) and rat brain membranes (210 fmol/mg protein) that fit the expected drug selectivity of a P2Y1-R. Taken together, these results indicate that [(3)H]MRS2279 is the first broadly applicable antagonist radioligand for a P2Y receptor.


Assuntos
Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/farmacologia , Compostos Radiofarmacêuticos/farmacologia , Receptores Purinérgicos P2/análise , Difosfato de Adenosina/síntese química , Difosfato de Adenosina/química , Animais , Células Cultivadas , Feminino , Humanos , Insetos/citologia , Antagonistas do Receptor Purinérgico P2 , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2Y1 , Trítio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA