Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 36(34): 8856-71, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27559168

RESUMO

UNLABELLED: Elucidating patterns of functional synaptic connectivity and deciphering mechanisms of how plasticity influences such connectivity is essential toward understanding brain function. In the mouse olfactory bulb (OB), principal neurons (mitral/tufted cells) make reciprocal connections with local inhibitory interneurons, including granule cells (GCs) and external plexiform layer (EPL) interneurons. Our current understanding of the functional connectivity between these cell types, as well as their experience-dependent plasticity, remains incomplete. By combining acousto-optic deflector-based scanning microscopy and genetically targeted expression of Channelrhodopsin-2, we mapped connections in a cell-type-specific manner between mitral cells (MCs) and GCs or between MCs and EPL interneurons. We found that EPL interneurons form broad patterns of connectivity with MCs, whereas GCs make more restricted connections with MCs. Using an olfactory associative learning paradigm, we found that these circuits displayed differential features of experience-dependent plasticity. Whereas reciprocal connectivity between MCs and EPL interneurons was nonplastic, the connections between GCs and MCs were dynamic and adaptive. Interestingly, experience-dependent plasticity of GCs occurred only in certain stages of neuronal maturation. We show that different interneuron subtypes form distinct connectivity maps and modes of experience-dependent plasticity in the OB, which may reflect their unique functional roles in information processing. SIGNIFICANCE STATEMENT: Deducing how specific interneuron subtypes contribute to normal circuit function requires understanding the dynamics of their connections. In the olfactory bulb (OB), diverse interneuron subtypes vastly outnumber principal excitatory cells. By combining acousto-optic deflector-based scanning microscopy, electrophysiology, and genetically targeted expression of Channelrhodopsin-2, we mapped the functional connectivity between mitral cells (MCs) and OB interneurons in a cell-type-specific manner. We found that, whereas external plexiform layer (EPL) interneurons show broadly distributed patterns of stable connectivity with MCs, adult-born granule cells show dynamic and plastic patterns of synaptic connectivity with task learning. Together, these findings reveal the diverse roles for interneuons within sensory circuits toward information learning and processing.


Assuntos
Aprendizagem por Associação/fisiologia , Mapeamento Encefálico , Interneurônios/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Bulbo Olfatório/citologia , Análise de Variância , Animais , Channelrhodopsins , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/genética , Potenciais Pós-Sinápticos Inibidores/fisiologia , Interneurônios/classificação , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Luz , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Inibição Neural/genética , Inibição Neural/fisiologia , Plasticidade Neuronal/genética , Odorantes , Optogenética , Técnicas de Patch-Clamp , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Nat Neurosci ; 20(2): 189-199, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28024159

RESUMO

Sensory maps are created by networks of neuronal responses that vary with their anatomical position, such that representations of the external world are systematically and topographically organized in the brain. Current understanding from studying excitatory maps is that maps are sculpted and refined throughout development and/or through sensory experience. Investigating the mouse olfactory bulb, where ongoing neurogenesis continually supplies new inhibitory granule cells into existing circuitry, we isolated the development of sensory maps formed by inhibitory networks. Using in vivo calcium imaging of odor responses, we compared functional responses of both maturing and established granule cells. We found that, in contrast to the refinement observed for excitatory maps, inhibitory sensory maps became broader with maturation. However, like excitatory maps, inhibitory sensory maps are sensitive to experience. These data describe the development of an inhibitory sensory map as a network, highlighting the differences from previously described excitatory maps.


Assuntos
Rede Nervosa/crescimento & desenvolvimento , Neurogênese/fisiologia , Neurônios/fisiologia , Bulbo Olfatório/crescimento & desenvolvimento , Olfato/fisiologia , Animais , Feminino , Masculino , Camundongos Transgênicos , Odorantes/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA