Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Neurosci ; 43(42): 7041-7055, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37714709

RESUMO

When humans reach to visual targets, extremely rapid (∼90 ms) target-directed responses can be observed in task-relevant proximal muscles. Such express visuomotor responses are inflexibly locked in time and space to the target and have been proposed to reflect rapid visuomotor transformations conveyed subcortically via the tecto-reticulo-spinal pathway. Previously, we showed that express visuomotor responses are sensitive to explicit cue-driven information about the target, suggesting that the express pathway can be modulated by cortical signals affording contextual prestimulus expectations. Here, we show that the express visuomotor system incorporates information about the physical hand-to-target distance and contextual rules during visuospatial tasks requiring different movement amplitudes. In one experiment, we recorded the activity from two shoulder muscles as 14 participants (6 females) reached toward targets that appeared at different distances from the reaching hand. Increasing the reaching distance facilitated the generation of frequent and large express visuomotor responses. This suggests that both the direction and amplitude of veridical hand-to-target reaches are encoded along the putative subcortical express pathway. In a second experiment, we modulated the movement amplitude by asking 12 participants (4 females) to deliberately undershoot, overshoot, or stop (control) at the target. The overshoot and undershoot tasks impaired the generation of large and frequent express visuomotor responses, consistent with the inability of the express pathway to generate responses directed toward nonveridical targets as in the anti-reach task. Our findings appear to reflect strategic, cortically driven modulation of the express visuomotor circuit to facilitate rapid and effective response initiation during target-directed actions.SIGNIFICANCE STATEMENT Express (∼90 ms) arm muscle responses that are consistently tuned toward the location of visual stimuli suggest a subcortical contribution to target-directed visuomotor behavior in humans, potentially via the tecto-reticulo-spinal pathway. Here, we show that express muscle responses are modulated appropriately to reach targets at different distances, but generally suppressed when the task required nonveridical responses to overshoot/undershoot the real target. This suggests that the tecto-reticulo-spinal pathway can be exploited strategically by the cerebral cortex to facilitate rapid initiation of effective responses during a visuospatial task.


Assuntos
Mãos , Desempenho Psicomotor , Feminino , Humanos , Desempenho Psicomotor/fisiologia , Mãos/fisiologia , Extremidade Superior , Movimento/fisiologia , Músculo Esquelético
2.
J Neurosci ; 43(15): 2782-2793, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36898839

RESUMO

Contemporary motor control theories propose competition between multiple motor plans before the winning command is executed. While most competitions are completed before movement onset, movements are often initiated before the competition has been resolved. An example of this is saccadic averaging, wherein the eyes land at an intermediate location between two visual targets. Behavioral and neurophysiological signatures of competing motor commands have also been reported for reaching movements, but debate remains about whether such signatures attest to an unresolved competition, arise from averaging across many trials, or reflect a strategy to optimize behavior given task constraints. Here, we recorded EMG activity from an upper limb muscle (m. pectoralis) while 12 (8 female) participants performed an immediate response reach task, freely choosing between one of two identical and suddenly presented visual targets. On each trial, muscle recruitment showed two distinct phases of directionally tuned activity. In the first wave, time-locked ∼100 ms of target presentation, muscle activity was clearly influenced by the nonchosen target, reflecting a competition between reach commands that was biased in favor of the ultimately chosen target. This resulted in an initial movement intermediate between the two targets. In contrast, the second wave, time-locked to voluntary reach onset, was not biased toward the nonchosen target, showing that the competition between targets was resolved. Instead, this wave of activity compensated for the averaging induced by the first wave. Thus, single-trial analysis reveals an evolution in how the nonchosen target differentially influences the first and second wave of muscle activity.SIGNIFICANCE STATEMENT Contemporary theories of motor control suggest that multiple motor plans compete for selection before the winning command is executed. Evidence for this is found in intermediate reach movements toward two potential target locations, but recent findings have challenged this notion by arguing that intermediate reaching movements reflect an optimal response strategy. By examining upper limb muscle recruitment during a free-choice reach task, we show early recruitment of a suboptimal averaged motor command to the two targets that subsequently transitions to a single motor command that compensates for the initially averaged motor command. Recording limb muscle activity permits single-trial resolution of the dynamic influence of the nonchosen target through time.


Assuntos
Desempenho Psicomotor , Extremidade Superior , Humanos , Feminino , Desempenho Psicomotor/fisiologia , Extremidade Superior/fisiologia , Movimento/fisiologia , Músculos
3.
Eur J Neurosci ; 60(6): 5328-5347, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39161111

RESUMO

The superior colliculus (SC) has been increasingly implicated in the rapid processing of evolutionarily relevant stimuli like faces, but the behavioural relevance of such processing is unclear. The SC has also been implicated in the generation of express visuomotor responses (EVR), which are very short-latency (~80 ms) bursts of muscle activity time-locked to visual target presentation. These observations led us to investigate the influence of faces on EVRs. We recorded upper limb muscle activity from healthy participants as they reached toward targets in the presence of a distractor. In some experiments, faces were used as stimuli. Across blocks of trials, we varied the instruction as to which stimulus served as the target or distractor. Doing so allowed us to assess the impact of instruction on muscle recruitment given identical visual stimuli. We found that responses were uniquely modulated in tasks involving high-contrast faces, promoting reaches toward or away from a face depending on instruction. Follow-up experiments confirmed that the phenomenon required highly salient repeated faces and was not observed to non-facial stimuli nor to faces expressing different affects. This study extends the hypothesis that the SC mediates the EVR by demonstrating that faces impact muscle recruitment at short latencies that precede cortical activity for face perception. Our results constitute direct evidence for the behavioural relevance of face detection in the brainstem, and also implicate a role for top-down cortical pre-setting of the EVR depending on task context.


Assuntos
Reconhecimento Facial , Desempenho Psicomotor , Humanos , Masculino , Feminino , Adulto , Desempenho Psicomotor/fisiologia , Adulto Jovem , Reconhecimento Facial/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia/métodos , Tempo de Reação/fisiologia , Colículos Superiores/fisiologia , Estimulação Luminosa/métodos
4.
J Neurophysiol ; 128(3): 494-510, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35858112

RESUMO

Humans can produce "express" (∼100 ms) arm muscle responses that are inflexibly locked in time and space to visual target presentations, consistent with subcortical visuomotor transformations via the tecto-reticulo-spinal pathway. These express visuomotor responses are sensitive to explicit cue-driven expectations, but it is unclear at what stage of sensory-to-motor transformation such modulation occurs. Here, we recorded electromyographic activity from shoulder muscles as participants reached toward one of four virtual targets whose physical location was partially predictable from a symbolic cue. In an experiment in which targets could be veridically reached, express responses were inclusive of the biomechanical requirements for reaching the cued locations and not systematically modulated by cue validity. In a second experiment, movements were restricted to the horizontal plane so that the participants could perform only rightward or leftward reaches, irrespective of target position on the vertical axis. Express muscle responses were almost identical for targets that were validly cued in the horizontal direction, regardless of cue validity in the vertical dimension. Together, these findings suggest that the cue-induced enhancements of express responses are dominated by effects at the level of motor plans and not solely via facilitation of early visuospatial target processing. Notably, direct corticotectal and corticoreticular projections exist that are well-placed to modulate prestimulus motor preparation state in subcortical circuits. Our results could reflect a neural mechanism by which contextually relevant motor responses to compatible visual inputs are rapidly released via subcortical circuits that are sufficiently along the sensory-to-motor continuum.NEW & NOTEWORTHY Express arm muscle responses to suddenly appearing visual targets for reaching rapid have been attributed to the tecto-reticulo-spinal pathway in humans. We demonstrate that symbolic cues before target presentation can modulate such express arm muscle responses compatibly with the biomechanics of the cued reaching direction and the cue validity. This implies cortically mediated modulation of one or more sensorimotor transformation nodes of the subcortical express pathway.


Assuntos
Sinais (Psicologia) , Desempenho Psicomotor , Braço/fisiologia , Humanos , Movimento/fisiologia , Músculos , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia
5.
J Neurophysiol ; 127(4): 969-983, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35294268

RESUMO

When required, humans can generate very short latency reaches toward visual targets, such as catching a falling cellphone. During such rapid reaches, express arm responses are the first wave of upper limb muscle recruitment, occurring ∼80-100 ms after target appearance. There is accumulating evidence that express arm responses arise from signaling along the tecto-reticulo-spinal tract, but the involvement of the reticulospinal tract has not been well studied. Since the reticulospinal tract projects bilaterally, we studied whether express arm responses would be generated bilaterally. Human participants (n = 14; 7 females) performed visually guided reaches in a modified emerging target paradigm where either arm could intercept the target. We recorded electromyographic activity bilaterally from the pectoralis major muscle. Our analysis focused on target locations where participants reached with the right arm on some trials, and the left arm on others. In support of the involvement of the reticulospinal tract, express arm responses persisted bilaterally regardless of which arm reached to the target. The latency and magnitude of the express arm response did not depend on whether the arm was chosen to reach or not. However, on the reaching arm, the magnitude of the express arm response was correlated to the level of anticipatory activity. The bilateral generation of express arm responses supports the involvement of the reticulospinal tract. We surmise that the correlation between anticipatory activity and the magnitude of express arm responses on the reaching arm arises from convergence of cortically derived signals with a parallel subcortical pathway mediating the express arm response.NEW & NOTEWORTHY Express arm responses have been proposed to arise from the tecto-reticulo-spinal tract originating within the superior colliculus, but the involvement of the reticulospinal tract has not been well studied. Here, we show these responses appear bilaterally in a task where either arm can reach to a newly appearing stimulus. Our results suggest that the most rapid visuomotor transformations for reaching are performed by a subcortical pathway.


Assuntos
Braço , Extremidade Superior , Braço/fisiologia , Eletromiografia/métodos , Feminino , Humanos , Masculino , Músculo Esquelético/fisiologia , Músculos , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Colículos Superiores
6.
J Neurophysiol ; 126(1): 68-81, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34077283

RESUMO

Humans have a remarkable capacity to rapidly interact with the surrounding environment, often by transforming visual input into motor output on a moment-to-moment basis. But what visual features promote rapid reaching? High-contrast, fast-moving targets elicit strong responses in the superior colliculus (SC), a structure associated with express saccades and implicated in rapid electromyographic (EMG) responses on upper limb muscles. To test the influence of stimulus properties on rapid reaches, we had human subjects perform visually guided reaches to moving targets varied by speed (experiment 1) or speed and contrast (experiment 2) in an emerging target paradigm that has recently been shown to robustly elicit fast visuomotor responses. Our analysis focused on stimulus-locked responses (SLRs) on upper limb muscles. SLRs appear within <100 ms of target presentation, and as the first wave of muscle recruitment they have been hypothesized to arise from the SC. Across 32 subjects studied in both experiments, 97% expressed SLRs in the emerging target paradigm, whereas only 69% expressed SLRs in an immediate response paradigm toward static targets. Faster-moving targets (experiment 1) evoked large-magnitude SLRs, whereas high-contrast fast-moving targets (experiment 2) evoked short-latency, large-magnitude SLRs. In some instances, SLR magnitude exceeded the magnitude of movement-aligned activity. Both large-magnitude and short-latency SLRs were correlated with short-latency reach reaction times. Our results support the hypothesis that, in scenarios requiring expedited responses, a subcortical pathway originating in the SC elicits the earliest wave of muscle recruitment, expediting reaction times.NEW & NOTEWORTHY How does the brain rapidly transform vision into action? Here, by recording upper limb muscle activity, we find that high-contrast and fast-moving targets are highly effective at evoking rapid visually guided reaches. We surmise that a brain stem circuit originating in the superior colliculus contributes to the most rapid reaching responses. When time is of the essence, cortical areas may serve to prime this circuit and elaborate subsequent phases of recruitment.


Assuntos
Sensibilidades de Contraste/fisiologia , Movimento/fisiologia , Estimulação Luminosa/métodos , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Adulto , Exoesqueleto Energizado , Feminino , Humanos , Masculino , Músculo Esquelético/fisiologia , Adulto Jovem
7.
J Neurophysiol ; 126(5): 1507-1523, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34550012

RESUMO

Human cerebral cortex can produce visuomotor responses that are modulated by contextual and task-specific constraints. However, the distributed cortical network for visuomotor transformations limits the minimal response time of that pathway. Notably, humans can generate express visuomotor responses in arm muscles that are inflexibly tuned to the target location and occur 80-120 ms from stimulus presentation [stimulus-locked responses (SLRs)]. This suggests a subcortical pathway for visuomotor transformations that might involve the superior colliculus and its downstream reticulo-spinal projections. Here we investigated whether cognitive expectations can modulate the SLR. In one experiment, we recorded surface electromyogram (EMG) from shoulder muscles as participants reached toward a visual target whose location was unpredictable in control conditions and partially predictable in cue conditions by interpreting a symbolic cue (75% validity). Valid symbolic cues led to earlier and larger SLRs than control conditions; invalid symbolic cues produced later and smaller SLRs than control conditions. This is consistent with a cortical top-down modulation of the putative subcortical SLR network. In a second experiment, we presented high-contrast targets in isolation (control) or ∼24 ms after low-contrast stimuli, which could appear at the same (valid cue) or opposite (invalid cue) location as the target and with equal probability (50% cue validity). We observed earlier SLRs than control with the valid low-contrast cues, whereas the invalid cues led to the opposite results. These findings may reflect bottom-up attentional mechanisms, potentially evolving subcortically via the superior colliculus. Overall, our results support both top-down and bottom-up modulations of the putative subcortical SLR network in humans.NEW & NOTEWORTHY Express visuomotor responses in humans appear to reflect subcortical sensorimotor transformation of visual inputs, potentially conveyed via the tecto-reticulo-spinal pathway. Here we show that the express responses are influenced by both symbolic and barely detectable spatial cues about stimulus location. The symbolic cue-induced effects suggest cortical top-down modulation of the putative subcortical visuomotor network. The effects of barely detectable cues may reflect exogenous facilitation mechanisms of the tecto-reticulo-spinal pathway.


Assuntos
Sinais (Psicologia) , Atividade Motora/fisiologia , Músculo Esquelético/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Espacial/fisiologia , Percepção Visual/fisiologia , Adulto , Eletromiografia , Feminino , Humanos , Masculino , Ombro/fisiologia , Adulto Jovem
8.
J Neurophysiol ; 125(3): 731-747, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33357166

RESUMO

Humans are able to generate target-directed visuomotor responses in less than 100 ms after stimulus onset. These "express" responses have been termed stimulus-locked responses (SLRs) and are proposed to be modulated by visuomotor transformations performed subcortically via the superior colliculus. Unfortunately, these responses have proven difficult to detect consistently across individuals. The recent report of an effective paradigm for generating SLRs in 100% of participants appears to change this. The task required the interception of a target moving at a constant velocity that emerged from behind a barrier. Here, we aimed to reproduce the efficacy of this paradigm for eliciting SLRs and to test the hypothesis that its effectiveness derives from the predictability of target onset time as opposed to target motion per se. In one experiment, we recorded surface electromyogram (EMG) from shoulder muscles as participants made reaches to intercept temporally predictable or unpredictable targets. Consistent with our hypothesis, predictably timed targets produced more frequent and stronger SLRs than unpredictably timed targets. In a second experiment, we compared different temporally predictable stimuli and observed that transiently presented targets produced larger and earlier SLRs than sustained moving targets. Our results suggest that target motion is not critical for facilitating the SLR expression and that timing predictability does not rely on extrapolation of a physically plausible motion trajectory. These findings provide support for a mechanism whereby an internal timer, probably located in cerebral cortex, primes the processing of both visual input and motor output within the superior colliculus to produce SLRs.NEW & NOTEWORTHY Express stimulus-driven responses in humans have been proposed to be originated subcortically via the superior colliculus. These short-latency responses are facilitated by the presentation of dynamic visual stimuli. Here, we show that this facilitation is related to the predictable target timing, regardless of its kinematic attributes. We propose that the superior colliculus can be primed to generate express stimulus-driven motor responses via cortical top-down projection.


Assuntos
Estimulação Luminosa/métodos , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Percepção Visual/fisiologia , Adulto , Eletromiografia/métodos , Feminino , Previsões , Humanos , Masculino , Adulto Jovem
9.
J Comput Neurosci ; 49(3): 229-249, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33161507

RESUMO

Saccades require a spatiotemporal transformation of activity between the intermediate layers of the superior colliculus (iSC) and downstream brainstem burst generator. The dynamic linear ensemble-coding model (Goossens and Van Opstal 2006) proposes that each iSC spike contributes a fixed mini-vector to saccade displacement. Although biologically-plausible, this model assumes cortical areas like the frontal eye fields (FEF) simply provide the saccadic goal to be executed by the iSC and brainstem burst generator. However, the FEF and iSC operate in unison during saccades, and a pathway from the FEF to the brainstem burst generator that bypasses the iSC exists. Here, we investigate the impact of large yet reversible inactivation of the FEF on iSC activity in the context of the model across four saccade tasks. We exploit the overlap of saccade vectors generated when the FEF is inactivated or not, comparing the number of iSC spikes for metrically-matched saccades. We found that the iSC emits fewer spikes for metrically-matched saccades during FEF inactivation. The decrease in spike count is task-dependent, with a greater decrease accompanying more cognitively-demanding saccades. Our results show that FEF integrity influences the readout of iSC activity in a task-dependent manner. We propose that the dynamic linear ensemble-coding model be modified so that FEF inactivation increases the gain of a readout parameter, effectively increasing the influence of a single iSC spike. We speculate that this modification could be instantiated by FEF and iSC pathways to the cerebellum that could modulate the excitability of the brainstem burst generator.


Assuntos
Movimentos Sacádicos , Colículos Superiores , Animais , Lobo Frontal , Macaca mulatta , Modelos Neurológicos
10.
J Neurophysiol ; 123(5): 1907-1919, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32267202

RESUMO

Express saccades are a manifestation of a visual grasp reflex triggered when visual information arrives in the intermediate layers of the superior colliculus (SCi), which in turn orchestrates the lower level brainstem saccade generator to evoke a saccade with a very short latency (~100 ms or less). A prominent theory regarding express saccades generation is that they are facilitated by preparatory signals, presumably from cortical areas, which prime the SCi before the arrival of visual information. Here, we test this theory by reversibly inactivating a key cortical input to the SCi, the frontal eye fields (FEF), while monkeys perform an oculomotor task that promotes express saccades. Across three tasks with a different combination of potential target locations and unilateral or bilateral FEF inactivation, we found a spared ability for monkeys to generate express saccades, despite decreases in express saccade frequency during FEF inactivation. This result is consistent with the FEF having a facilitatory but not critical role in express saccade generation, likely because other cortical areas compensate for the loss of preparatory input to the SCi. However, we also found decreases in the accuracy and peak velocity of express saccades generated during FEF inactivation, which argues for an influence of the FEF on the saccadic burst generator even during express saccades. Overall, our results shed further light on the role of the FEF in the shortest-latency visually-guided eye movements.NEW & NOTEWORTHY Express saccades are the shortest-latency saccade. The frontal eye fields (FEF) are thought to promote express saccades by presetting the superior colliculus. Here, by reversibly inactivating the FEF either unilaterally or bilaterally via cortical cooling, we support this by showing that the FEF plays a facilitative but not critical role in express saccade generation. We also found that FEF inactivation lowered express saccade peak velocity, emphasizing a contribution of the FEF to express saccade kinematics.


Assuntos
Lobo Frontal/fisiologia , Movimentos Sacádicos/fisiologia , Colículos Superiores/fisiologia , Percepção Visual/fisiologia , Animais , Comportamento Animal/fisiologia , Macaca mulatta , Masculino
11.
J Neurosci ; 38(18): 4367-4382, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29636393

RESUMO

Movement inhibition is an aspect of executive control that can be studied using the countermanding paradigm, wherein subjects try to cancel an impending movement following presentation of a stop signal. This paradigm permits estimation of the stop-signal reaction time or the time needed to respond to the stop signal. Numerous countermanding studies have examined fast, ballistic movements, such as saccades, even though many movements in daily life are not ballistic and can be stopped at any point during their trajectory. A benefit of studying the control of nonballistic movements is that antagonist muscle recruitment, which serves to actively brake a movement, presumably arises in response to the stop signal. Here, nine human participants (2 female) performed a center-out whole-arm reaching task with a countermanding component, while we recorded the activity of upper-limb muscles contributing to movement generation and braking. The data show a clear response on antagonist muscles to a stop signal, even for movements that have barely begun. As predicted, the timing of such antagonist recruitment relative to the stop signal covaried with conventional estimates of the stop-signal reaction time, both within and across subjects. The timing of antagonist muscle recruitment also attested to a rapid reprioritization of movement inhibition, with antagonist latencies decreasing across sequences consisting of repeated stop trials; such reprioritization also scaled with error magnitude. We conclude that antagonist muscle recruitment arises as a manifestation of a stopping process, providing a novel, accessible, and within-trial measure of the stop-signal reaction time.SIGNIFICANCE STATEMENT The countermanding or stop-signal paradigm permits estimation of how quickly subjects cancel an impending movement. Traditionally, this paradigm has been studied using simple movements, such as saccadic eye movements or button presses. Here, by measuring upper limb muscle activity while human subjects countermand whole-arm reaching movements, we show that movement cancellation often involves prominent recruitment of antagonist muscles that serves to actively brake the movement, even on movements that have barely begun. The timing of antagonist muscle recruitment correlates with traditional estimates of movement cancellation. Because they can be detected on a single-trial basis, muscle-based measures may provide a new way of characterizing movement cancellation at an unprecedented within-trial resolution.


Assuntos
Braço/fisiologia , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Algoritmos , Braço/inervação , Fenômenos Biomecânicos , Eletromiografia , Feminino , Humanos , Masculino , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Distribuição Normal , Tempo de Reação/fisiologia , Recrutamento Neurofisiológico/fisiologia , Extremidade Superior/inervação , Extremidade Superior/fisiologia , Adulto Jovem
12.
J Neurophysiol ; 121(1): 85-95, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30427764

RESUMO

How do humans learn to adapt their motor actions to achieve task success? Recent behavioral and patient studies have challenged the classic notion that motor learning arises solely from the errors produced during a task, suggesting instead that explicit cognitive strategies can act in concert with the implicit, error-based, motor learning component. In this study, we show that the earliest wave of directionally tuned neuromuscular activity that begins within ~100 ms of peripheral visual stimulus onset is selectively influenced by the implicit component of motor learning. In contrast, the voluntary neuromuscular activity associated with reach initiation, which evolves ~100-200 ms later, is influenced by both the implicit and explicit components of motor learning. The selective influence of the implicit, but not explicit, component of motor learning on the directional tuning of the earliest cascade of neuromuscular activity supports the notion that these components of motor learning can differentially influence descending motor pathways. NEW & NOTEWORTHY Motor learning can be driven both by an implicit error-based component and an explicit strategic component, but the influence of these components on the descending pathways that contribute to motor control is unknown. In this study, we show that the implicit component selectively influences a reflexive circuit that rapidly generates a visuomotor response on the human upper limb. Our results show that the substrates mediating implicit and explicit motor learning exert distinct influences on descending motor pathways.


Assuntos
Adaptação Fisiológica/fisiologia , Aprendizagem/fisiologia , Desempenho Psicomotor/fisiologia , Extremidade Superior/fisiologia , Percepção Visual/fisiologia , Adulto , Fenômenos Biomecânicos , Eletromiografia , Feminino , Humanos , Masculino , Músculo Esquelético/fisiologia , Reflexo/fisiologia , Rotação , Percepção Espacial/fisiologia , Fatores de Tempo
13.
PLoS Biol ; 14(8): e1002531, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27509130

RESUMO

Microsaccades aid vision by helping to strategically sample visual scenes. Despite the importance of these small eye movements, no cortical area has ever been implicated in their generation. Here, we used unilateral and bilateral reversible inactivation of the frontal eye fields (FEF) to identify a cortical drive for microsaccades. Unexpectedly, FEF inactivation altered microsaccade metrics and kinematics. Such inactivation also impaired microsaccade deployment following peripheral cue onset, regardless of cue side or inactivation configuration. Our results demonstrate that the FEF provides critical top-down drive for microsaccade generation, particularly during the recovery of microsaccades after disruption by sensory transients. Our results constitute the first direct evidence, to our knowledge, for the contribution of any cortical area to microsaccade generation, and they provide a possible substrate for how cognitive processes can influence the strategic deployment of microsaccades.


Assuntos
Lobo Frontal/fisiologia , Movimentos Sacádicos/fisiologia , Córtex Visual/fisiologia , Campos Visuais/fisiologia , Animais , Fenômenos Biomecânicos , Sinais (Psicologia) , Fixação Ocular/fisiologia , Macaca mulatta , Masculino , Estimulação Luminosa , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Percepção Visual/fisiologia
14.
Eur Arch Otorhinolaryngol ; 276(11): 2991-3003, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31359129

RESUMO

BACKGROUND: The vestibular evoked myogenic potential (VEMP) is a technique used to assess vestibular function. Cervical VEMPs (cVEMPs) are obtained conventionally from the sternocleidomastoid (SCM) muscle; however, the dorsal neck muscle splenius capitis (SPL) has also been shown to be a reliable target alongside the SCM in young subjects. OBJECTIVE: This study aimed to compare cVEMPs from the SCM and SPL in two positions across young, older, and Parkinson's disease (PD) patients. METHOD: Experiments were carried out using surface EMG electrodes placed over the SCM and SPL. cVEMPs were measured using a 30 s, 126 dB sound stimulus with 222 individual tone bursts, while subjects were in a supine and head-turned posture (also known as the head elevation method), and in a seated head-turned posture. RESULTS: When comparing cVEMPs across positions, the incidence of supine and seated SCM-cVEMPs diminished significantly in older and PD patients in comparison with young subjects. However, no statistically significant differences in incidences were found in seated SPL-cVEMPs when comparing young, older and PD patients. SPL-cVEMPs were present significantly more often than seated SCM-cVEMPs in PD patients. CONCLUSIONS: SPL-cVEMPs are not altered to the same extent that SCM-cVEMPs are by aging and disease and its addition to cVEMP testing may reduce false-positive tests for vestibulopathy.


Assuntos
Músculos do Pescoço/fisiologia , Músculos Paraespinais/fisiologia , Doença de Parkinson/fisiopatologia , Potenciais Evocados Miogênicos Vestibulares/fisiologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Eletromiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
J Neurosci ; 37(48): 11715-11730, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29089439

RESUMO

Stochastic accumulator models provide a comprehensive framework for how neural activity could produce behavior. Neural activity within the frontal eye fields (FEFs) and intermediate layers of the superior colliculus (iSC) support such models for saccade initiation by relating variations in saccade reaction time (SRT) to variations in such parameters as baseline, rate of accumulation of activity, and threshold. Here, by recording iSC activity during reversible cryogenic inactivation of the FEF in four male nonhuman primates, we causally tested which parameter(s) best explains concomitant increases in SRT. While FEF inactivation decreased all aspects of ipsilesional iSC activity, decreases in accumulation rate and threshold poorly predicted accompanying increases in SRT. Instead, SRT increases best correlated with delays in the onset of saccade-related accumulation. We conclude that FEF signals govern the onset of saccade-related accumulation within the iSC, and that the onset of accumulation is a relevant parameter for stochastic accumulation models of saccade initiation.SIGNIFICANCE STATEMENT The superior colliculus (SC) and frontal eye fields (FEFs) are two of the best-studied areas in the primate brain. Surprisingly, little is known about what happens in the SC when the FEF is temporarily inactivated. Here, we show that temporary FEF inactivation decreases all aspects of functionally related activity in the SC. This combination of techniques also enabled us to relate changes in SC activity to concomitant increases in saccadic reaction time (SRT). Although stochastic accumulator models relate SRT increases to reduced rates of accumulation or increases in threshold, such changes were not observed in the SC. Instead, FEF inactivation delayed the onset of saccade-related accumulation, emphasizing the importance of this parameter in biologically plausible models of saccade initiation.


Assuntos
Criocirurgia , Tempo de Reação/fisiologia , Movimentos Sacádicos/fisiologia , Colículos Superiores/fisiologia , Campos Visuais/fisiologia , Animais , Criocirurgia/métodos , Macaca mulatta , Masculino , Desempenho Psicomotor/fisiologia
16.
J Neurophysiol ; 119(4): 1319-1328, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29212925

RESUMO

A core assumption underlying mental chronometry is that more complex tasks increase cortical processing, prolonging reaction times. In this study we show that increases in task complexity alter the magnitude, rather than the latency, of the output for a circuit that rapidly transforms visual information into motor actions. We quantified visual stimulus-locked responses (SLRs), which are changes in upper limb muscle recruitment that evolve at a fixed latency ~100 ms after novel visual stimulus onset. First, we studied the underlying reference frame of the SLR by dissociating the initial eye and hand position. Despite its quick latency, we found that the SLR was expressed in a hand-centric reference frame, suggesting that the circuit mediating the SLR integrated retinotopic visual information with body configuration. Next, we studied the influence of planned movement trajectory, requiring participants to prepare and generate either curved or straight reaches in the presence of obstacles to attain the same visual stimulus location. We found that SLR magnitude was influenced by the planned movement trajectory to the same visual stimulus. On the basis of these results, we suggest that the circuit mediating the SLR lies in parallel to other well-studied corticospinal pathways. Although the fixed latency of the SLR precludes extensive cortical processing, inputs conveying information relating to task complexity, such as body configuration and planned movement trajectory, can preset nodes within the circuit underlying the SLR to modulate its magnitude. NEW & NOTEWORTHY We studied stimulus-locked responses (SLRs), which are changes in human upper limb muscle recruitment that evolve at a fixed latency ~100 ms after novel visual stimulus onset. We showed that despite its quick latency, the circuitry mediating the SLR transformed a retinotopic visual signal into a hand-centric motor command that is modulated by the planned movement trajectory. We suggest that the circuit generating the SLR is mediated through a tectoreticulospinal, rather than a corticospinal, pathway.


Assuntos
Braço/fisiologia , Atividade Motora/fisiologia , Músculo Esquelético/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Visual/fisiologia , Adulto , Fenômenos Biomecânicos , Vias Eferentes/fisiologia , Eletromiografia , Eletroculografia , Feminino , Humanos , Masculino , Adulto Jovem
17.
J Neurosci ; 36(13): 3765-76, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27030761

RESUMO

Pupillometry provides a simple and noninvasive index for a variety of cognitive processes, including perception, attention, task consolidation, learning, and memory. The neural substrates by which such cognitive processes influence pupil diameter remain somewhat unclear, although cortical inputs to the locus coeruleus mediating arousal are likely involved. Changes in pupil diameter also accompany covert orienting; hence the oculomotor system may provide an alternative substrate for cognitive influences on pupil diameter. Here, we show that low-level electrical microstimulation of the primate frontal eye fields (FEFs), a cortical component of the oculomotor system strongly connected to the intermediate layers of the superior colliculus (SCi), evoked robust pupil dilation even in the absence of evoked saccades. The magnitude of such dilation scaled with increases in stimulation parameters, depending strongly on the intensity and number of pulses. Although there are multiple pathways by which FEF stimulation could cause pupil dilation, the timing and profile of dilation closely resembled that evoked by SCi stimulation. Moreover, pupil dilation evoked from the FEFs increased when presumed oculomotor activity was higher at the time of stimulation. Our findings implicate the oculomotor system as a potential substrate for how cognitive processes can influence pupil diameter. We suggest that a pathway from the frontal cortex through the SCi operates in parallel with frontal inputs to arousal circuits to regulate task-dependent modulation of pupil diameter, perhaps indicative of an organization wherein one pathway assumes primacy for a given cognitive process. SIGNIFICANCE STATEMENT: Pupillometry (the measurement of pupil diameter) provides a simple and noninvasive index for a variety of cognitive processes, offering a biomarker that has value in both health and disease. But how do cognitive processes influence pupil diameter? Here, we show that low-level stimulation of the primate frontal eye fields can induce robust pupil dilation without saccades. Pupil dilation scaled with the number and intensity of stimulation pulses and varied with endogenous oculomotor activity at the time of stimulation. The oculomotor system therefore provides a plausible pathway by which cognitive processes may influence pupil diameter, perhaps operating in conjunction with systems regulating arousal.


Assuntos
Atenção/fisiologia , Córtex Pré-Frontal/fisiologia , Pupila/fisiologia , Movimentos Sacádicos/fisiologia , Animais , Biofísica , Estimulação Elétrica , Fixação Ocular , Macaca mulatta , Masculino , Estimulação Luminosa , Tempo de Reação/fisiologia , Campos Visuais/fisiologia
18.
J Neurosci ; 36(31): 8273-82, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27488645

RESUMO

UNLABELLED: The appearance of a novel visual stimulus generates a rapid stimulus-locked response (SLR) in the motor periphery within 100 ms of stimulus onset. Here, we recorded SLRs from an upper limb muscle while humans reached toward (pro-reach) or away (anti-reach) from a visual stimulus. The SLR on anti-reaches encoded the location of the visual stimulus rather than the movement goal. Further, SLR magnitude was attenuated when subjects reached away from rather than toward the visual stimulus. Remarkably, SLR magnitudes also correlated with reaction times on both pro-reaches and anti-reaches, but did so in opposite ways: larger SLRs preceded shorter latency pro-reaches but longer latency anti-reaches. Although converging evidence suggests that the SLR is relayed via a tectoreticulospinal pathway, our results show that task-related signals modulate visual signals feeding into this pathway. The SLR therefore provides a trial-by-trial window into how visual information is integrated with cognitive control in humans. SIGNIFICANCE STATEMENT: The presentation of a visual stimulus elicits a trial-by-trial stimulus-locked response (SLR) on the human limb within 100 ms. Here, we show that the SLR continues to reflect stimulus location even when subjects move in the opposite direction (an anti-reach). Remarkably, the attenuation of SLR magnitude reflected the cognitive control required to generate a correct anti-reach, with greater degrees of attenuation preceding shorter-latency anti-reaches and no attenuation preceding error trials. Our results are strikingly similar to neurophysiological recordings in the superior colliculus of nonhuman primates generating anti-saccades, implicating the tectoreticulospinal pathway. Measuring SLR magnitude therefore provides an unprecedented trial-by-trial opportunity to assess the influence of cognitive control on the initial processing of a visual stimulus in humans.


Assuntos
Retroalimentação Sensorial/fisiologia , Movimento/fisiologia , Músculo Esquelético/fisiologia , Tempo de Reação/fisiologia , Reflexo/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Músculo Esquelético/inervação , Estimulação Luminosa/métodos , Análise e Desempenho de Tarefas , Adulto Jovem
19.
Eur J Neurosci ; 45(9): 1212-1223, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28177166

RESUMO

The cervical vestibular evoked myogenic potential (cVEMP) is a common and simple test of vestibulospinal reflex patency. In the clinic, cVEMPs are measured in response to loud sounds from the sternocleidomastoid (SCM) on the ventral neck, as subjects maintain an uncomfortable head posture needed to recruit SCM. Here we characterize the cVEMP in a dorsal neck turner (splenius capitis; SPL), and compare it with the SCM cVEMP. cVEMPs were recorded simultaneously via surface electromyography from SCM and SPL from 17 healthy subjects in a variety of postures, including head-turned postures adopted while either seated or standing, and the clinical posture. Like the SCM cVEMP recorded ipsilateral to the side of sound stimulation, the cVEMP on the contralateral SPL (synergistic with ipsilateral SCM) was characterized by a biphasic wave of muscle activity that began at ~ 13 ms. cVEMP reliability was higher on SPL vs. SCM in standing postures (chi-squared; P < 0.05), and equivalent results were obtained from SPL in a standing or seated posture. In 9 of the 17 subjects, we also obtained bilateral intramuscular (IM) recordings from SPL at the same time as the surface recordings. In these subjects, the initial surface response in SPL was associated with a consistent decrease in multi-unit IM SPL activity. Overall, these results demonstrate that SPL recordings offer a complimentary target for cVEMP assessments. The expression of SPL cVEMPs in simple head-turned postures may also improve the utility of cVEMP testing for vestibular assessment in children, the elderly, or non-compliant.


Assuntos
Músculos do Pescoço/fisiologia , Músculos Paraespinais/fisiologia , Postura/fisiologia , Potenciais Evocados Miogênicos Vestibulares/fisiologia , Estimulação Acústica/métodos , Adulto , Eletromiografia/métodos , Feminino , Humanos , Masculino , Reflexo/fisiologia , Reprodutibilidade dos Testes , Vestíbulo do Labirinto/fisiologia , Adulto Jovem
20.
J Neurosci ; 34(44): 14803-15, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25355232

RESUMO

Transcranial magnetic stimulation (TMS) has emerged as an important technique in cognitive neuroscience, permitting causal inferences about the contribution of a given brain area to behavior. Despite widespread use, exactly how TMS influences neural activity throughout an interconnected network, and how such influences ultimately change behavior, remain unclear. The oculomotor system of nonhuman primates (NHPs) offers a potential animal model to bridge this gap. Here, based on results suggesting that neck muscle activity provides a sensitive indicator of oculomotor activation, we show that single pulses of TMS over the frontal eye fields (FEFs) in awake NHPs evoked rapid (within ∼25 ms) and fairly consistent (∼50-75% of all trials) expression of a contralateral head-turning synergy. This neck muscle response resembled that evoked by subsaccadic electrical microstimulation of the FEF. Systematic variation in TMS location revealed that this response could also be evoked from the dorsolateral prefrontal cortex (dlPFC). Combining TMS with an oculomotor task revealed state dependency, with TMS evoking larger neck muscle responses when the stimulated area was actively engaged. Together, these results advance the suitability of the NHP oculomotor system as an animal model for TMS. The polysynaptic neck muscle response evoked by TMS of the prefrontal cortex is a quantifiable trial-by-trial reflection of oculomotor activation, comparable to the monosynaptic motor-evoked potential evoked by TMS of primary motor cortex. Our results also speak to a role for both the FEF and dlPFC in head orienting, presumably via subcortical connections with the superior colliculus.


Assuntos
Movimentos Oculares/fisiologia , Músculos do Pescoço/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Macaca fascicularis , Macaca mulatta , Masculino , Tempo de Reação/fisiologia , Estimulação Magnética Transcraniana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA