Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(48): e2310522120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37983497

RESUMO

With the significant increase in the availability of microbial genome sequences in recent years, resistance gene-guided genome mining has emerged as a powerful approach for identifying natural products with specific bioactivities. Here, we present the use of this approach to reveal the roseopurpurins as potent inhibitors of cyclin-dependent kinases (CDKs), a class of cell cycle regulators implicated in multiple cancers. We identified a biosynthetic gene cluster (BGC) with a putative resistance gene with homology to human CDK2. Using targeted gene disruption and transcription factor overexpression in Aspergillus uvarum, and heterologous expression of the BGC in Aspergillus nidulans, we demonstrated that roseopurpurin C (1) is produced by this cluster and characterized its biosynthesis. We determined the potency, specificity, and mechanism of action of 1 as well as multiple intermediates and shunt products produced from the BGC. We show that 1 inhibits human CDK2 with a Kiapp of 44 nM, demonstrates selectivity for clinically relevant members of the CDK family, and induces G1 cell cycle arrest in HCT116 cells. Structural analysis of 1 complexed with CDK2 revealed the molecular basis of ATP-competitive inhibition.


Assuntos
Quinases Ciclina-Dependentes , Neoplasias , Humanos , Quinases Ciclina-Dependentes/metabolismo , Quinase 2 Dependente de Ciclina/genética , Ciclinas/metabolismo , Ciclo Celular/genética , Inibidores Enzimáticos
2.
Ann Neurol ; 91(6): 782-795, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35289960

RESUMO

OBJECTIVE: The objective of this study was to determine the impact of multiple sclerosis (MS) disease-modifying therapies (DMTs) on the development of cellular and humoral immunity to severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection. METHODS: Patients with MS aged 18 to 60 years were evaluated for anti-nucleocapsid and anti-Spike receptor-binding domain (RBD) antibody with electro-chemiluminescence immunoassay; antibody responses to Spike protein, RBD, N-terminal domain with multiepitope bead-based immunoassays (MBI); live virus immunofluorescence-based microneutralization assay; T-cell responses to SARS-CoV-2 Spike using TruCulture enzyme-linked immunosorbent assay (ELISA); and IL-2 and IFNγ ELISpot assays. Assay results were compared by DMT class. Spearman correlation and multivariate analyses were performed to examine associations between immunologic responses and infection severity. RESULTS: Between January 6, 2021, and July 21, 2021, 389 patients with MS were recruited (mean age 40.3 years; 74% women; 62% non-White). Most common DMTs were ocrelizumab (OCR)-40%; natalizumab -17%, Sphingosine 1-phosphate receptor (S1P) modulators -12%; and 15% untreated. One hundred seventy-seven patients (46%) had laboratory evidence of SARS-CoV-2 infection; 130 had symptomatic infection, and 47 were asymptomatic. Antibody responses were markedly attenuated in OCR compared with other groups (p ≤0.0001). T-cell responses (IFNγ) were decreased in S1P (p = 0.03), increased in natalizumab (p <0.001), and similar in other DMTs, including OCR. Cellular and humoral responses were moderately correlated in both OCR (r = 0.45, p = 0.0002) and non-OCR (r = 0.64, p <0.0001). Immune responses did not differ by race/ethnicity. Coronavirus disease 2019 (COVID-19) clinical course was mostly non-severe and similar across DMTs; 7% (9/130) were hospitalized. INTERPRETATION: DMTs had differential effects on humoral and cellular immune responses to SARS-CoV-2 infection. Immune responses did not correlate with COVID-19 clinical severity in this relatively young and nondisabled group of patients with MS. ANN NEUROL 2022;91:782-795.


Assuntos
COVID-19 , Esclerose Múltipla , Adulto , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Antivirais , Etnicidade , Feminino , Humanos , Imunidade Celular , Imunidade Humoral , Masculino , Natalizumab/uso terapêutico , SARS-CoV-2
3.
Ann Rheum Dis ; 80(10): 1339-1344, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34035003

RESUMO

OBJECTIVE: To investigate the humoral and cellular immune response to messenger RNA (mRNA) COVID-19 vaccines in patients with immune-mediated inflammatory diseases (IMIDs) on immunomodulatory treatment. METHODS: Established patients at New York University Langone Health with IMID (n=51) receiving the BNT162b2 mRNA vaccination were assessed at baseline and after second immunisation. Healthy subjects served as controls (n=26). IgG antibody responses to the spike protein were analysed for humoral response. Cellular immune response to SARS-CoV-2 was further analysed using high-parameter spectral flow cytometry. A second independent, validation cohort of controls (n=182) and patients with IMID (n=31) from Erlangen, Germany, were also analysed for humoral immune response. RESULTS: Although healthy subjects (n=208) and patients with IMID on biologic treatments (mostly on tumour necrosis factor blockers, n=37) demonstrate robust antibody responses (over 90%), those patients with IMID on background methotrexate (n=45) achieve an adequate response in only 62.2% of cases. Similarly, patients with IMID on methotrexate do not demonstrate an increase in CD8+ T-cell activation after vaccination. CONCLUSIONS: In two independent cohorts of patients with IMID, methotrexate, a widely used immunomodulator for the treatment of several IMIDs, adversely affected humoral and cellular immune response to COVID-19 mRNA vaccines. Although precise cut-offs for immunogenicity that correlate with vaccine efficacy are yet to be established, our findings suggest that different strategies may need to be explored in patients with IMID taking methotrexate to increase the chances of immunisation efficacy against SARS-CoV-2 as has been demonstrated for augmenting immunogenicity to other viral vaccines.

4.
Am J Respir Cell Mol Biol ; 60(6): 637-649, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30562042

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by increased pulmonary artery pressure and vascular resistance, typically leading to right heart failure and death. Current therapies improve quality of life of the patients but have a modest effect on long-term survival. A detailed transcriptomics and systems biology view of the PAH lung is expected to provide new testable hypotheses for exploring novel treatments. We completed transcriptomics analysis of PAH and control lung tissue to develop disease-specific and clinical data/tissue pathology gene expression classifiers from expression datasets. Gene expression data were integrated into pathway analyses. Gene expression microarray data were collected from 58 PAH and 25 control lung tissues. The strength of the dataset and its derived disease classifier was validated using multiple approaches. Pathways and upstream regulators analyses was completed with standard and novel graphical approaches. The PAH lung dataset identified expression patterns specific to PAH subtypes, clinical parameters, and lung pathology variables. Pathway analyses indicate the important global role of TNF and transforming growth factor signaling pathways. In addition, novel upstream regulators and insight into the cellular and innate immune responses driving PAH were identified. Finally, WNT-signaling pathways may be a major determinant underlying the observed sex differences in PAH. This study provides a transcriptional framework for the PAH-diseased lung, supported by previously reported findings, and will be a valuable resource to the PAH research community. Our investigation revealed novel potential targets and pathways amenable to further study in a variety of experimental systems.


Assuntos
Pulmão/metabolismo , Pulmão/patologia , Hipertensão Arterial Pulmonar/genética , Análise de Sistemas , Transcriptoma/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Regulação da Expressão Gênica , Ontologia Genética , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Hipertensão Arterial Pulmonar/patologia , Caracteres Sexuais , Transdução de Sinais/genética , Adulto Jovem
5.
J Infect Dis ; 218(10): 1653-1662, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-29548008

RESUMO

Background: Infection with Mycobacterium tuberculosis is associated with inconsistent and incomplete elimination of the bacteria, despite development of antigen-specific T-cell responses. One mechanism used by M tuberculosis is to limit availability of antigen for activation of CD4 T cells. Methods: We examined the utility of systemic administration of epitope peptides to activate pre-existing T cells in mice infected with M tuberculosis. Results: We found that systemic peptide administration (1) selectively activates T cells specific for the epitope peptide, (2) loads major histocompatibility complex class II on lung macrophages and dendritic cells, (3) activates CD4 T cells in the lung parenchyma, (4) and has little antimycobacterial activity. Conclusions: Further studies revealed that CD4 T cells in lung lesions are distant from the infected cells, suggesting that, even if they can be activated, the positioning of CD4 T cells and their direct interactions with infected cells may be limiting determinants of immunity in tuberculosis.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Ativação Linfocitária/imunologia , Mycobacterium tuberculosis , Tuberculose , Animais , Antígenos de Bactérias/administração & dosagem , Antígenos de Bactérias/imunologia , Feminino , Pulmão/citologia , Pulmão/imunologia , Complexo Principal de Histocompatibilidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/imunologia , Peptídeos/administração & dosagem , Peptídeos/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia
8.
Am J Respir Crit Care Med ; 189(9): 1110-20, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24605778

RESUMO

RATIONALE: Pulmonary arterial hypertension (PAH) is a progressive disease characterized by elevated pulmonary artery pressure, vascular remodeling, and ultimately right ventricular heart failure. PAH can have a genetic component (heritable PAH), most often through mutations of bone morphogenetic protein receptor 2, and idiopathic and associated forms. Heritable PAH is not completely penetrant within families, with approximately 20% concurrence of inactivating bone morphogenetic protein receptor 2 mutations and delayed onset of PAH disease. Because one of the treatment options is using prostacyclin analogs, we hypothesized that prostacyclin synthase promoter sequence variants associated with increased mRNA expression may play a protective role in the bone morphogenetic protein receptor 2 unaffected carriers. OBJECTIVES: To characterize the range of prostacyclin synthase promoter variants and assess their transcriptional activities in PAH-relevant cell types. To determine the distribution of prostacyclin synthase promoter variants in PAH, unaffected carriers in heritable PAH families, and control populations. METHODS: Polymerase chain reaction approaches were used to genotype prostacyclin synthase promoter variants in more than 300 individuals. Prostacyclin synthase promoter haplotypes' transcriptional activities were determined with luciferase reporter assays. MEASUREMENTS AND MAIN RESULTS: We identified a comprehensive set of prostacyclin synthase promoter variants and tested their transcriptional activities in PAH-relevant cell types. We demonstrated differences of prostacyclin synthase promoter activities dependent on their haplotype. CONCLUSIONS: Prostacyclin synthase promoter sequence variants exhibit a range of transcriptional activities. We discovered a significant bias for more active prostacyclin synthase promoter variants in unaffected carriers as compared with affected patients with PAH.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Sistema Enzimático do Citocromo P-450/genética , Heterozigoto , Hipertensão Pulmonar/genética , Oxirredutases Intramoleculares/genética , Polimorfismo Genético , Estudos de Casos e Controles , Sistema Enzimático do Citocromo P-450/fisiologia , Progressão da Doença , Hipertensão Pulmonar Primária Familiar , Feminino , Haplótipos , Humanos , Oxirredutases Intramoleculares/fisiologia , Masculino , Mutação , Reação em Cadeia da Polimerase
9.
Sci Immunol ; 9(96): eadj8526, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905326

RESUMO

Memory CD4 T cells are critical to human immunity, yet it is unclear whether viral inflammation during memory formation has long-term consequences. Here, we compared transcriptional and epigenetic landscapes of Spike (S)-specific memory CD4 T cells in 24 individuals whose first exposure to S was via SARS-CoV-2 infection or mRNA vaccination. Nearly 2 years after memory formation, S-specific CD4 T cells established by infection remained enriched for transcripts related to cytotoxicity and for interferon-stimulated genes, likely because of a chromatin accessibility landscape altered by inflammation. Moreover, S-specific CD4 T cells primed by infection had reduced proliferative capacity in vitro relative to vaccine-primed cells. Furthermore, the transcriptional state of S-specific memory CD4 T cells was minimally altered by booster immunization and/or breakthrough infection. Thus, infection-associated inflammation durably imprints CD4 T cell memory, which affects the function of these cells and may have consequences for long-term immunity.


Assuntos
Linfócitos T CD4-Positivos , COVID-19 , Memória Imunológica , Inflamação , Células T de Memória , SARS-CoV-2 , Humanos , COVID-19/imunologia , SARS-CoV-2/imunologia , Linfócitos T CD4-Positivos/imunologia , Memória Imunológica/imunologia , Inflamação/imunologia , Células T de Memória/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Feminino , Masculino , Adulto , Vacinas contra COVID-19/imunologia
10.
bioRxiv ; 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36415470

RESUMO

Adaptive immune responses are induced by vaccination and infection, yet little is known about how CD4+ T cell memory differs when primed in these two contexts. Notably, viral infection is generally associated with higher levels of systemic inflammation than is vaccination. To assess whether the inflammatory milieu at the time of CD4+ T cell priming has long-term effects on memory, we compared Spike-specific memory CD4+ T cells in 22 individuals around the time of the participants' third SARS-CoV-2 mRNA vaccination, with stratification by whether the participants' first exposure to Spike was via virus or mRNA vaccine. Multimodal single-cell profiling of Spike-specific CD4+ T cells revealed 755 differentially expressed genes that distinguished infection- and vaccine-primed memory CD4+ T cells. Spike-specific CD4+ T cells from infection-primed individuals had strong enrichment for cytotoxicity and interferon signaling genes, whereas Spike-specific CD4+ T cells from vaccine-primed individuals were enriched for proliferative pathways by gene set enrichment analysis. Moreover, Spike-specific memory CD4+ T cells established by infection had distinct epigenetic landscapes driven by enrichment of IRF-family transcription factors, relative to T cells established by mRNA vaccination. This transcriptional imprint was minimally altered following subsequent mRNA vaccination or breakthrough infection, reflecting the strong bias induced by the inflammatory environment during initial memory differentiation. Together, these data suggest that the inflammatory context during CD4+ T cell priming is durably imprinted in the memory state at transcriptional and epigenetic levels, which has implications for personalization of vaccination based on prior infection history.

11.
medRxiv ; 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-33907755

RESUMO

SARS-CoV-2 infection and vaccination elicit potent immune responses. Our study presents a comprehensive multimodal single-cell dataset of peripheral blood of patients with acute COVID-19 and of healthy volunteers before and after receiving the SARS-CoV-2 mRNA vaccine and booster. We compared host immune responses to the virus and vaccine using transcriptional profiling, coupled with B/T cell receptor repertoire reconstruction. COVID-19 patients displayed an enhanced interferon signature and cytotoxic gene upregulation, absent in vaccine recipients. These findings were validated in an independent dataset. Analysis of B and T cell repertoires revealed that, while the majority of clonal lymphocytes in COVID-19 patients were effector cells, clonal expansion was more evident among circulating memory cells in vaccine recipients. Furthermore, while clonal αß T cell responses were observed in both COVID-19 patients and vaccine recipients, dramatic expansion of clonal γδT cells was found only in infected individuals. Our dataset enables comparative analyses of immune responses to infection versus vaccination, including clonal B and T cell responses. Integrating our data with publicly available datasets allowed us to validate our findings in larger cohorts. To our knowledge, this is the first dataset to include comprehensive profiling of longitudinal samples from healthy volunteers pre/post SARS-CoV-2 vaccine and booster.

12.
iScience ; 26(12): 108572, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38213787

RESUMO

SARS-CoV-2 infection and vaccination elicit potent immune responses. Our study presents a comprehensive multimodal single-cell analysis of blood from COVID-19 patients and healthy volunteers receiving the SARS-CoV-2 vaccine and booster. We profiled immune responses via transcriptional analysis and lymphocyte repertoire reconstruction. COVID-19 patients displayed an enhanced interferon signature and cytotoxic gene upregulation, absent in vaccine recipients. B and T cell repertoire analysis revealed clonal expansion among effector cells in COVID-19 patients and memory cells in vaccine recipients. Furthermore, while clonal αß T cell responses were observed in both COVID-19 patients and vaccine recipients, expansion of clonal γδ T cells was found only in infected individuals. Our dataset enables side-by-side comparison of immune responses to infection versus vaccination, including clonal B and T cell responses. Our comparative analysis shows that vaccination induces a robust, durable clonal B and T cell responses, without the severe inflammation associated with infection.

13.
Comp Immunol Microbiol Infect Dis ; 87: 101838, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35700556

RESUMO

Bacille Calmette-Guerin (BCG) is the only approved vaccine against tuberculosis but the subcutaneous route does not provide for the elimination of Mycobacterium tuberculosis (Mtb), thus highlighting the need for investigating other routes of administration. We used a unique set of 60 peptide pools with unprecedented coverage of the bacterium that had previously been used to study T cell responses in subjects latently infected with Mtb. We showed that intravenous BCG vaccination of C57BL/6 mice elicited a more robust IFN-γ response from splenocytes than the subcutaneous route, with the highest responses driven by the Ag85A/B and PE/PPE family epitopes, followed by TB10.4 and Esx-1. We then compared the spectrum of antigen recognition in BCG-naïve H37Rv-challenged and BCG-vaccinated H37Rv-challenged mice. Peptides belonging to TB10.4, ESAT-6, CFP-10, Ag85A/Ag85B, PE/PPE and Esx families up-regulated IFN-γ production in the lungs of BCG-naïve H37Rv-challenged mice but the response was much lower in the BCG-vaccinated group. Historically, a limited number of Mtb antigens have been used to study T cell responses in TB. The goal of using this 60-peptide assay was to define T cell responses in TB down to the epitope level. We envision that the use of broad antigen panels such as ours in conjunction with studies of bacterial load reduction will help delineate the protective efficacy of 'groups' of antigens.


Assuntos
Mycobacterium tuberculosis , Doenças dos Roedores , Vacinas contra a Tuberculose , Tuberculose , Animais , Antígenos de Bactérias , Vacina BCG , Proteínas de Bactérias/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Tuberculose/prevenção & controle , Tuberculose/veterinária
14.
mBio ; 13(3): e0133222, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35695454

RESUMO

In the initial stage of respiratory infection, Mycobacterium tuberculosis traverses from alveolar macrophages to phenotypically diverse monocyte-derived phagocytes and neutrophils in the lung parenchyma. Here, we compare the in vivo kinetics of early bacterial growth and cell-to-cell spread of two strains of M. tuberculosis: a lineage 2 strain, 4334, and the widely studied lineage 4 strain H37Rv. Using flow cytometry, live cell sorting of phenotypic subsets, and quantitation of bacteria in cells of the distinct subsets, we found that 4334 induces less leukocyte influx into the lungs but demonstrates earlier population expansion and cell-to-cell spread. The earlier spread of 4334 to recruited cells, including monocyte-derived dendritic cells, is accompanied by earlier and greater magnitude of CD4+ T cell activation. The results provide evidence that strain-specific differences in interactions with lung leukocytes can shape adaptive immune responses in vivo. IMPORTANCE Tuberculosis is a leading infectious disease killer worldwide and is caused by Mycobacterium tuberculosis. After exposure to M. tuberculosis, outcomes range from apparent elimination to active disease. Early innate immune responses may contribute to differences in outcomes, yet it is not known how bacterial strains alter the early dynamics of innate immune and T cell responses. We infected mice with distinct strains of M. tuberculosis and discovered striking differences in innate cellular recruitment, cell-to-cell spread of bacteria in the lungs, and kinetics of initiation of antigen-specific CD4 T cell responses. We also found that M. tuberculosis can spread beyond alveolar macrophages even before a large influx of inflammatory cells. These results provide evidence that distinct strains of M. tuberculosis can exhibit differential kinetics in cell-to-cell spread which is not directly linked to early recruitment of phagocytes but is subsequently linked to adaptive immune responses.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Imunidade Inata , Pulmão/microbiologia , Macrófagos Alveolares , Camundongos , Tuberculose/microbiologia
15.
Cell Rep ; 38(2): 110237, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34982967

RESUMO

Recently identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants Mu and C.1.2 have spike proteins with mutations that may confer resistance to natural and vaccine-elicited antibodies. Analysis of neutralizing antibody titers in the sera of vaccinated individuals without previous history of infection and from convalescent individuals show partial resistance of the viruses. In contrast, sera from individuals with a previous history of SARS-CoV-2 infection who were subsequently vaccinated neutralize variants with titers 4- to 11-fold higher, providing a rationale for vaccination of individuals with previous infection. The heavily mutated C.1.2 spike is the most antibody neutralization-resistant spike to date; however, the avidity of C.1.2 spike protein for angiotensin-converting enzyme 2 (ACE2) is low. This finding suggests that the virus evolved to escape the humoral response but has a decrease in fitness, suggesting that it may cause milder disease or be less transmissible. It may be difficult for the spike protein to evolve to escape neutralizing antibodies while maintaining high affinity for ACE2.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Células A549 , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Humanos , Testes de Neutralização/métodos , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação/métodos
16.
Front Immunol ; 13: 797589, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350781

RESUMO

The increasing prevalence of SARS-CoV-2 variants has raised concerns regarding possible decreases in vaccine effectiveness. Here, neutralizing antibody titers elicited by mRNA-based and adenoviral vector-based vaccines against variant pseudotyped viruses were measured. BNT162b2 and mRNA-1273-elicited antibodies showed modest neutralization resistance against Beta, Delta, Delta plus and Lambda variants whereas Ad26.COV2.S-elicited antibodies from a significant fraction of vaccinated individuals had less neutralizing titer (IC50 <50). The data underscore the importance of surveillance for breakthrough infections that result in severe COVID-19 and suggest a potential benefit by second immunization following Ad26.COV2.S to increase protection from current and future variants.


Assuntos
COVID-19 , SARS-CoV-2 , Ad26COVS1 , Adenoviridae/genética , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , RNA Mensageiro , SARS-CoV-2/genética
17.
Sci Transl Med ; 14(631): eabi8961, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-34874183

RESUMO

The use of coronavirus disease 2019 (COVID-19) vaccines will play the major role in helping to end the pandemic that has killed millions worldwide. COVID-19 vaccines have resulted in robust humoral responses and protective efficacy in human trials, but efficacy trials excluded individuals with a prior diagnosis of COVID-19. As a result, little is known about how immune responses induced by mRNA vaccines differ in individuals who recovered from COVID-19. Here, we evaluated longitudinal immune responses to two-dose BNT162b2 mRNA vaccination in 15 adults who had experienced COVID-19, compared to 21 adults who did not have prior COVID-19. Consistent with prior studies of mRNA vaccines, we observed robust cytotoxic CD8+ T cell responses in both cohorts after the second dose. Furthermore, SARS-CoV-2­naive individuals had progressive increases in humoral and antigen-specific antibody-secreting cell (ASC) responses after each dose of vaccine, whereas SARS-CoV-2­experienced individuals demonstrated strong humoral and antigen-specific ASC responses to the first dose but these responses were not further enhanced after the second dose of the vaccine at the time points studied. Together, these data highlight the relevance of immunological history for understanding vaccine immune responses and may have implications for personalizing mRNA vaccination regimens used to prevent COVID-19, including for the deployment of booster shots.


Assuntos
Vacina BNT162 , COVID-19 , Anticorpos Antivirais , Vacinas contra COVID-19 , Humanos , Imunidade Humoral , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinação , Vacinas Sintéticas , Vacinas de mRNA
18.
Vaccines (Basel) ; 10(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36560562

RESUMO

Around the world, rollout of COVID-19 vaccines has been used as a strategy to end COVID-19-related restrictions and the pandemic. Several COVID-19 vaccine platforms have successfully protected against severe SARS-CoV-2 infection and subsequent deaths. Here, we compared humoral and cellular immunity in response to either infection or vaccination. We examined SARS-CoV-2 spike-specific immune responses from Pfizer/BioNTech BNT162b2, Moderna mRNA-1273, Janssen Ad26.COV2.S, and SARS-CoV-2 infection approximately 4 months post-exposure or vaccination. We found that these three vaccines all generate relatively similar immune responses and elicit a stronger response than natural infection. However, antibody responses to recent viral variants are diminished across all groups. The similarity of immune responses from the three vaccines studied here is an important finding in maximizing global protection as vaccination campaigns continue.

19.
Arthritis Rheumatol ; 74(2): 284-294, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34347939

RESUMO

OBJECTIVE: To evaluate seroreactivity and disease flares after COVID-19 vaccination in a multiethnic/multiracial cohort of patients with systemic lupus erythematosus (SLE). METHODS: Ninety SLE patients and 20 healthy controls receiving a complete COVID-19 vaccine regimen were included. IgG seroreactivity to the SARS-CoV-2 spike receptor-binding domain (RBD) and SARS-CoV-2 microneutralization were used to evaluate B cell responses; interferon-γ (IFNγ) production was measured by enzyme-linked immunospot (ELISpot) assay in order to assess T cell responses. Disease activity was measured by the hybrid SLE Disease Activity Index (SLEDAI), and flares were identified according to the Safety of Estrogens in Lupus Erythematosus National Assessment-SLEDAI flare index. RESULTS: Overall, fully vaccinated SLE patients produced significantly lower IgG antibodies against SARS-CoV-2 spike RBD compared to fully vaccinated controls. Twenty-six SLE patients (28.8%) generated an IgG response below that of the lowest control (<100 units/ml). In logistic regression analyses, the use of any immunosuppressant or prednisone and a normal anti-double-stranded DNA antibody level prior to vaccination were associated with decreased vaccine responses. IgG seroreactivity to the SARS-CoV-2 spike RBD strongly correlated with the SARS-CoV-2 microneutralization titers and correlated with antigen-specific IFNγ production determined by ELISpot. In a subset of patients with poor antibody responses, IFNγ production was similarly diminished. Pre- and postvaccination SLEDAI scores were similar in both groups. Postvaccination flares occurred in 11.4% of patients; 1.3% of these were severe. CONCLUSION: In a multiethnic/multiracial study of SLE patients, 29% had a low response to the COVID-19 vaccine which was associated with receiving immunosuppressive therapy. Reassuringly, severe disease flares were rare. While minimal protective levels remain unknown, these data suggest that protocol development is needed to assess the efficacy of booster vaccination.


Assuntos
Antirreumáticos/uso terapêutico , Vacinas contra COVID-19/uso terapêutico , COVID-19/prevenção & controle , Hospedeiro Imunocomprometido , Imunogenicidade da Vacina , Imunossupressores/uso terapêutico , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Vacina de mRNA-1273 contra 2019-nCoV/uso terapêutico , Ad26COVS1/uso terapêutico , Adulto , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Vacina BNT162/uso terapêutico , Vacinas contra COVID-19/imunologia , Estudos de Casos e Controles , Estudos de Coortes , ELISPOT , Feminino , Glucocorticoides/uso terapêutico , Humanos , Imunoglobulina G/imunologia , Interferon gama/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/fisiopatologia , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Prednisona/uso terapêutico , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia , Exacerbação dos Sintomas
20.
bioRxiv ; 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34312623

RESUMO

The increasing prevalence of SARS-CoV-2 variants has raised concerns regarding possible decreases in vaccine efficacy. Here, neutralizing antibody titers elicited by mRNA-based and an adenoviral vector-based vaccine against variant pseudotyped viruses were compared. BNT162b2 and mRNA-1273-elicited antibodies showed modest neutralization resistance against Beta, Delta, Delta plus and Lambda variants whereas Ad26.COV2.S-elicited antibodies from a significant fraction of vaccinated individuals were of low neutralizing titer (IC 50 <50). The data underscore the importance of surveillance for breakthrough infections that result in severe COVID-19 and suggest the benefit of a second immunization following Ad26.COV2.S to increase protection against the variants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA