RESUMO
Intravenous iron preparations, like iron sucrose (IS) and ferric carboxymaltose (FCM) differ in their physicochemical stability. Thus differences in storage and utilization can be expected and were investigated in a non-clinical study in liver parenchyma HepG2-cells and THP-1 macrophages as models for toxicological and pharmacological target cells. HepG2-cells incorporated significant amounts of IS, elevated the labile iron pool (LIP) and ferritin and stimulated iron release. HepG2-cells had lower basal cellular iron and ferritin content than THP-1 macrophages, which showed only marginal accumulation of IS and FCM. However, FCM increased the LIP up to twofold and significantly elevated ferritin within 24 h in HepG2-cells. IS and FCM were non-toxic for HepG2-cells and THP-1 macrophages were more sensitive to FCM compared to IS at all concentrations tested. In a cell-free environment redox-active iron was higher with IS than FCM. Biostability testing via assessment of direct transfer to serum transferrin did not reflect the chemical stability of the complexes (i.e., FCM > IS). Effect of vitamin C on mobilisation to transferrin was an increase with IS and interestingly a decrease with FCM. In conclusion, FCM has low bioavailability for liver parenchyma cells, therefore liver iron deposition is unlikely. Ascorbic acid reduces transferrin-chelatable iron from ferric carboxymaltose, thus effects on hepcidin expression should be investigated in clinical studies.
Assuntos
Compostos Férricos/farmacologia , Ácido Glucárico/farmacologia , Maltose/análogos & derivados , Ácido Ascórbico/metabolismo , Linhagem Celular , Óxido de Ferro Sacarado , Ferritinas/metabolismo , Células Hep G2 , Humanos , Ferro/metabolismo , Fígado/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Maltose/farmacologiaRESUMO
CONTEXT: Severe iron deficiency requires intravenous iron supplementation to replenish iron stores. Intravenous iron sucrose has been used for decades for the treatment of anemia. New generic iron sucrose products are now marketed for the use in several countries and there is an ongoing discussion about the safety and efficacy of iron sucrose similars. OBJECTIVE: In this study, we compared the iron sucrose originator Venofer® and the generic iron sucrose AZAD (ISA) regarding bioavailability, toxicity and stability in human THP-1 cells and HepG2 cells. METHODS: The bioavailability of Venofer® and ISA was investigated in both cell types by a ferrozin-based assay. The release of incorporated iron was assayed by atomic absorption spectroscopy. Ferritin content was measured by enzyme-linked immunosorbent assay (ELISA). HepG2 cells were used to investigate the intracellular labile iron pool (LIP), which was measured by the fluorescent calcein assay. The amount of redox-active iron within the iron formulations was assayed using fluorescent dichlorofluorescein. RESULTS: We found no significant differences in all parameters between Venofer® and ISA in regard of bioavailability, toxicity and stability in vitro. DISCUSSION: ISA shows identical physico-chemical features and identical bioavailability in vitro. This study is a profound basis for future clinical tests with generic iron sucrose compounds.
Assuntos
Anemia Ferropriva/tratamento farmacológico , Medicamentos Genéricos/administração & dosagem , Medicamentos Genéricos/química , Compostos Férricos/administração & dosagem , Compostos Férricos/química , Sacarose/administração & dosagem , Sacarose/química , Disponibilidade Biológica , Técnicas de Cultura de Células , Relação Dose-Resposta a Droga , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Medicamentos Genéricos/efeitos adversos , Medicamentos Genéricos/metabolismo , Ensaio de Imunoadsorção Enzimática , Compostos Férricos/efeitos adversos , Compostos Férricos/metabolismo , Óxido de Ferro Sacarado , Ferritinas/metabolismo , Ácido Glucárico , Células Hep G2 , Humanos , Injeções Intravenosas , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Espectrofotometria Atômica , Sacarose/efeitos adversos , Sacarose/metabolismoRESUMO
Naked mole rats (NMRs) are the longest-lived rodents, with young individuals having high levels of Aß in their brains. The purpose of this study was twofold: to assess the distribution of Aß in key regions of NMR brains (cortex, hippocampus, cerebellum) and to understand whether the accumulation of Aß is due to enhanced production or decreased degradation. Recent evidence indicates that lipid peroxides directly participate in induction of cytoprotective proteins, such as heat shock proteins (Hsps), which play a central role in the cellular mechanisms of stress tolerance. Amyloid precursor protein processing, lipid peroxidation, Hsps, redox status, and protein degradation processes were therefore assessed in key NMR brain regions. NMR brains had high levels of lipid peroxidation compared with mice, and the NMR hippocampus had the highest levels of the most toxic moiety of Aß (soluble Aß1 - 42 ). This was due not to increased Aß production but rather to low antioxidant potential, which was associated with low induction of Hsp70 and heme oxygenase-1 as well as low ubiquitin-proteasome activity. NMRs may therefore serve as natural models for understanding the relationship between oxidative stress and Aß levels and its effects on the brain.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Estresse Oxidativo/fisiologia , Animais , Encéfalo/patologia , Immunoblotting , Peroxidação de Lipídeos/fisiologia , Ratos-ToupeiraRESUMO
Background: Approximately 10-20% of subjects vaccinated with HBsAg-based hepatitis B virus (HBV) vaccines are non-responders. BM32 is a recombinant grass pollen allergy vaccine containing the HBV-derived preS surface antigen as an immunological carrier protein. PreS includes the binding site of HBV to its receptor on hepatocytes. We investigated whether immunological non-responsiveness to HBV after repeated HBsAg-based vaccinations could be overcome by immunization with VVX001 (i.e., alum-adsorbed BM325, a component of BM32). Methods: A subject failing to develop protective HBV-specific immunity after HBsAg-based vaccination received five monthly injections of 20 µg VVX001. PreS-specific antibody responses were measured by enzyme-linked immunosorbent assay (ELISA) and micro-array technology. Serum reactivity to subviral particles of different HBV genotypes was determined by sandwich ELISA. PreS-specific T cell responses were monitored by carboxyfluorescein diacetate succinimidyl ester (CFSE) staining and subsequent flow cytometry. HBV neutralization was assessed using cultured HBV-infected HepG2 cells. Results: Vaccination with VVX001 induced a strong and sustained preS-specific antibody response composed mainly of the IgG1 subclass. PreS-specific IgG antibodies were primarily directed to the N-terminal part of preS containing the sodium taurocholate co-transporting polypeptide (NTCP) attachment site. IgG reactivity to subviral particles as well as to the N-terminal preS-derived peptides was comparable for HBV genotypes A-H. A pronounced reactivity of CD3+CD4+ lymphocytes specific for preS after the complete injection course remaining up to one year after the last injection was found. Maximal HBV neutralization (98.4%) in vitro was achieved 1 month after the last injection, which correlated with the maximal IgG reactivity to the N-terminal part of preS. Conclusions: Our data suggest that VVX001 may be used as a preventive vaccination against HBV even in non-responders to HBsAg-based HBV vaccines.
RESUMO
Modulation of endogenous cellular defense mechanisms represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. This paper introduces the emerging role of exogenous molecules in hormetic-based neuroprotection and the mitochondrial redox signaling concept of hormesis and its applications to the field of neuroprotection and longevity. Maintenance of optimal long-term health conditions is accomplished by a complex network of longevity assurance processes that are controlled by vitagenes, a group of genes involved in preserving cellular homeostasis during stressful conditions. Vitagenes encode for heat shock proteins (Hsp) Hsp32, Hsp70, the thioredoxin and the sirtuin protein systems. Dietary antioxidants, such as polyphenols and L-carnitine/acetyl-L-carnitine, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways, including vitagenes. Hormesis provides the central underpinning of neuroprotective responses, providing a framework for explaining the common quantitative features of their dose response relationships, their mechanistic foundations, their relationship to the concept of biological plasticity as well as providing a key insight for improving the accuracy of the therapeutic dose of pharmaceutical agents within the highly heterogeneous human population. This paper describes in mechanistic detail how hormetic dose responses are mediated for endogenous cellular defense pathways including sirtuin, Nrfs and related pathways that integrate adaptive stress responses in the prevention of neurodegenerative diseases. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.
Assuntos
Envelhecimento/fisiologia , Hormese , Longevidade , Estresse Oxidativo , Envelhecimento/metabolismo , HumanosRESUMO
Understanding mechanisms of aging and determinants of life span will help to reduce age-related morbidity and facilitate healthy aging. Average lifespan has increased over the last centuries, as a consequence of medical and environmental factors, but maximal life span remains unchanged. Extension of maximal life span is currently possible in animal models with measures such as genetic manipulations and caloric restriction (CR). CR appears to prolong life by reducing reactive oxygen species (ROS)-mediated oxidative damage. But ROS formation, which is positively implicated in cellular stress response mechanisms, is a highly regulated process controlled by a complex network of intracellular signaling pathways. By sensing the intracellular nutrient and energy status, the functional state of mitochondria, and the concentration of ROS produced in mitochondria, the longevity network regulates life span across species by coordinating information flow along its convergent, divergent and multiply branched signaling pathways, including vitagenes which are genes involved in preserving cellular homeostasis during stressful conditions. Vitagenes encode for heat shock proteins (Hsp) Hsp32, Hsp70, the thioredoxin and the sirtuin protein systems. Dietary antioxidants, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways, including vitagenes. The hormetic dose-response, challenges long-standing beliefs about the nature of the dose-response in a lowdose zone, having the potential to affect significantly the design of pre-clinical studies and clinical trials as well as strategies for optimal patient dosing in the treatment of numerous diseases. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing stress responses. Here we focus on possible signaling mechanisms involved in the activation of vitagenes resulting in enhanced defense against energy and stress resistance homeostasis dysiruption with consequent impact on longevity processes.
RESUMO
Alzheimer's Disease (AD) is a neurodegenerative disorder affecting up to one third of individuals reaching the age of 80. Different integrated responses exist in the brain to detect oxidative stress which is controlled by several genes termed Vitagenes. Vitagenes encode for cytoprotective heat shock proteins (Hsp), as well as thioredoxin, sirtuins and uncouple proteins (UCPs). In the present study we evaluate stress response mechanisms in plasma and lymphocytes of AD patients, as compared to controls, in order to provide evidence of an imbalance of oxidant/antioxidant mechanisms and oxidative damage in AD patients and the possible protective role of vitagenes.We found that the levels of Sirt-1 and Sirt-2 in AD lymphocytes were significantly higher than in control subjects. Interestingly, analysis of plasma showed in AD patients increased expression of Trx, a finding associated with reduced expression of UCP1, as compared to control group.This finding can open up new neuroprotective strategies, as molecules inducing this defense mechanisms can represent a therapeutic target to minimize the deleterious consequences associated to oxidative stress, such as in brain aging and neurodegenerative disorders.
RESUMO
The widely accepted oxidative stress theory of aging postulates that aging results from accumulation of oxidative damage. A prediction of this theory is that, among species, differential rates of aging may be apparent on the basis of intrinsic differences in oxidative damage accrual. Although widely accepted, there is a growing number of exceptions to this theory, most contingently related to genetic model organism investigations. Proteins are one of the prime targets for oxidative damage and cysteine residues are particularly sensitive to reversible and irreversible oxidation. The adaptation and survival of cells and organisms requires the ability to sense proteotoxic insults and to coordinate protective cellular stress response pathways and chaperone networks related to protein quality control and stability. The toxic effects that stem from the misassembly or aggregation of proteins or peptides, in any cell type, are collectively termed proteotoxicity. Despite the abundance and apparent capacity of chaperones and other components of homeostasis to restore folding equilibrium, the cell appears poorly adapted for chronic proteotoxic stress which increases in cancer, metabolic and neurodegenerative diseases. Pharmacological modulation of cellular stress response pathways has emerging implications for the treatment of human diseases, including neurodegenerative disorders, cardiovascular disease, and cancer. A critical key to successful medical intervention is getting the dose right. Achieving this goal can be extremely challenging due to human inter-individual variation as affected by age, gender, diet, exercise, genetic factors and health status. The nature of the dose response in and adjacent to the therapeutic zones, over the past decade has received considerable advances. The hormetic dose-response, challenging long-standing beliefs about the nature of the dose-response in a lowdose zone, has the potential to affect significantly the design of pre-clinical studies and clinical trials as well as strategies for optimal patient dosing in the treatment of numerous diseases. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing stress responses, including carnitines. This paper describes in mechanistic detail how hormetic dose responses are mediated for endogenous cellular defense pathways, including the possible signaling mechanisms by which the carnitine system, by interplaying metabolism, mitochondrial energetics and activation of critical vitagenes, modulates signal transduction cascades that confer cytoprotection against chronic degenerative damage associated to aging and neurodegenerative disorders.
Assuntos
Envelhecimento/fisiologia , Carnitina/deficiência , Doenças Neurodegenerativas/fisiopatologia , Estresse Fisiológico , Adaptação Fisiológica , Humanos , Mitocôndrias/fisiologia , OxirreduçãoRESUMO
BACKGROUND: Chronic hepatitis B virus (HBV) infections are a global health problem. There is a need for therapeutic strategies blocking continuous infection of liver cells. The grass pollen allergy vaccine BM32 containing the preS domain of the large HBV surface protein (LHBs) as immunogenic carrier induced IgG antibodies in human subjects inhibiting HBV infection in vitro. Aim of this study was the quantification, epitope mapping and investigation of HBV genotype cross-reactivity of preS-specific antibodies in subjects treated with different dosage regimens of BM32 METHODS: Hundred twenty eight grass pollen allergic patients received in a double-blind, placebo-controlled trial five monthly injections of placebo (aluminum hydroxide, n= 34) or different courses of BM32 (2 placebo + 3 BM32, n= 33; 1 placebo + 4 BM32, n= 30; 5 BM32, n= 31). Recombinant Escherichia coli-expressed preS was purified. Overlapping peptides spanning preS and the receptor-binding sites from consensus sequences of genotypes A-H were synthesized and purified. Isotype (IgM, IgG, IgA, IgE) and IgG subclass (IgG1-IgG4) responses to preS and peptides were determined by ELISA at baseline, one and four months after the last injection. IgG1 and IgG4 subclass concentrations specific for preS and the receptor-binding site were measured by quantitative ELISA. FINDINGS: Five monthly injections induced the highest levels of preS-specific IgG consisting mainly of IgG1 and IgG4, with a sum of median preS-specific IgG1 and IgG4 concentrations of >135 µg/ml reaching up to 1.8 mg/ml. More than 20% of preS-specific IgG was directed against the receptor-binding site. BM32-induced IgG cross-reacted with the receptor-binding domains from all eight HBV genotypes A-H. INTERPRETATION: BM32 induces high levels of IgG1 and IgG4 antibodies against the receptor binding sites of all eight HBV genotypes and hence might be suitable for therapeutic HBV vaccination. FUNDING: This study was supported by the PhD program IAI (KPW01212FW), by Viravaxx AG and by the Danube-ARC funded by the Government of Lower Austria. Rudolf Valenta is a recipient of a Megagrant of the Government of the Russian Federation, grant No 14.W03.31.0024.
Assuntos
Reações Cruzadas/imunologia , Mapeamento de Epitopos , Genótipo , Anticorpos Anti-Hepatite B/genética , Anticorpos Anti-Hepatite B/imunologia , Antígenos de Superfície da Hepatite B/imunologia , Rinite Alérgica Sazonal/prevenção & controle , Vacinas/imunologia , Alérgenos/imunologia , Especificidade de Anticorpos/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Vírus da Hepatite B/imunologia , Hepatite B Crônica/imunologia , Hepatite B Crônica/virologia , Humanos , Esquemas de Imunização , Imunoglobulina E/imunologia , Imunoglobulina G/imunologia , Masculino , Pólen/imunologia , Ligação Proteica , Proteínas Recombinantes/imunologia , Vacinação , Vacinas/administração & dosagemRESUMO
Modulation of endogenous cellular defense mechanisms via the stress response signaling represents an innovative approach to therapeutic intervention in diseases causing chronic damage, such as neurodegeneration and cancer. Protein thiols play a key role in redox sensing, and regulation of cellular redox state is crucial mediator of multiple metabolic, signaling, and transcriptional processes. Maintenance of optimal long-term health conditions is accomplished by a complex network of longevity assurance processes that are controlled by vitagenes, a group of genes involved in preserving cellular homeostasis during stressful conditions. Vitagenes encode for heat shock proteins (Hsp) Hsp32, Hsp70, the thioredoxin, and the sirtuin protein systems. Dietary antioxidants, such as polyphenols and L-carnitine/acetyl-L-carnitine, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways, including vitagenes. The hormetic dose-response, challenges long-standing beliefs about the nature of the dose-response in a low dose zone, having the potential to affect significantly the design of pre-clinical studies and clinical trials as well as strategies for optimal patient dosing in the treatment of numerous diseases. Given the broad cytoprotective properties of the heat shock response, there is now strong interest in discovering and developing pharmacological agents capable of inducing these responses. In this review we discuss the most current and up-to-date understanding of the possible signaling mechanisms by which acetylcarnitine by activating vitagenes can differentially modulate signal transduction cascades inducing apoptosis/cell death in abnormal cancer cells but at the same time enhancing defensive enzymes to protect against carcinogenesis and neurodegeneration in normal cells. (c) 2009 International Union of Biochemistry and Molecular Biology, Inc.
Assuntos
Acetilcarnitina/metabolismo , Metabolismo Energético , Homeostase/genética , Estresse Fisiológico , Acetilcarnitina/química , Animais , Citoproteção , Humanos , Chaperonas Moleculares/metabolismo , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologiaRESUMO
The products of vitagenes such as heat shock protein 32 (Hsp32, heme oxygenase 1) and Hsp70, the family of inducible cytoprotective proteins regulated by the Keap1/Nrf2/ARE pathway, and small molecule antioxidants such as glutathione provide the cell with powerful means to counteract and survive various conditions of stress. Among these protective systems, the heat shock proteins represent a highly conserved and robust way for preservation of correct protein conformation, recovery of damaged proteins, and cell survival. Their regulation is dependent on the redox status of the cell, thus redox regulation is rapidly evolving as an important metabolic modulator of cellular functions, and is being increasingly implicated in many chronic inflammatory and degenerative diseases. Protein thiols play a key role in redox sensing, and regulation of cellular redox state is crucial mediator of multiple metabolic, signalling and transcriptional processes in the brain. Nitric oxide, and reactive nitrogen species induce the transcription of vitagenes and Keap1/Nrf2/ARE-dependent genes whose functional products protect against a wide array of subsequent challenges. Emerging interest is now focusing on exogenous small molecules that are capable of activating these systems as a novel target to minimize deleterious consequences associated with free radical-induced cell damage, such as during neurodegeneration. This chapter describes methods that can be used to assess the expression of heat shock proteins and the cellular glutathione redox status and discusses their relevance to mechanisms modulating the onset and progression of neurodegenerative diseases.
Assuntos
Regulação da Expressão Gênica/fisiologia , Glutationa/metabolismo , Proteínas de Choque Térmico/biossíntese , Líquido Intracelular/metabolismo , Oxirredução , Linhagem Celular Tumoral , Proteínas de Choque Térmico/genética , Heme Oxigenase (Desciclizante)/biossíntese , Heme Oxigenase (Desciclizante)/genética , Humanos , Estresse Oxidativo/fisiologiaRESUMO
The predominant molecular symptom of aging is the accumulation of altered gene products. Moreover, several conditions including protein, lipid or glucose oxidation disrupt redox homeostasis and lead to accumulation of unfolded or misfolded proteins in the aging brain. Alzheimer's and Parkinson's diseases or Friedreich ataxia are neurological diseases sharing, as a common denominator, production of abnormal proteins, mitochondrial dysfunction and oxidative stress, which contribute to the pathogenesis of these so called "protein conformational diseases". The central nervous system has evolved the conserved mechanism of unfolded protein response to cope with the accumulation of misfolded proteins. As one of the main intracellular redox systems involved in neuroprotection, the vitagene system is emerging as a neurohormetic potential target for novel cytoprotective interventions. Vitagenes encode for cytoprotective heat shock proteins (Hsp) Hsp70 and heme oxygenase-1, as well as thioredoxin reductase and sirtuins. Nutritional studies show that ageing in animals can be significantly influenced by dietary restriction. Thus, the impact of dietary factors on health and longevity is an increasingly appreciated area of research. Reducing energy intake by controlled caloric restriction or intermittent fasting increases lifespan and protects various tissues against disease. Genetics has revealed that ageing may be controlled by changes in intracellular NAD/NADH ratio regulating sirtuin, a group of proteins linked to aging, metabolism and stress tolerance in several organisms. Recent findings suggest that several phytochemicals exhibit biphasic dose responses on cells with low doses activating signaling pathways that result in increased expression of vitagenes encoding survival proteins, as in the case of the Keap1/Nrf2/ARE pathway activated by curcumin and NAD/NADH-sirtuin-1 activated by resveratrol. Consistently, the neuroprotective roles of dietary antioxidants including curcumin, acetyl-L-carnitine and carnosine have been demonstrated through the activation of these redox-sensitive intracellular pathways. Although the notion that stress proteins are neuroprotective is broadly accepted, still much work needs to be done in order to associate neuroprotection with specific pattern of stress responses. In this review the importance of vitagenes in the cellular stress response and the potential use of dietary antioxidants in the prevention and treatment of neurodegenerative disorders is discussed.
Assuntos
Envelhecimento , Dieta , Longevidade , Doenças Neurodegenerativas/metabolismo , Estresse Oxidativo , Animais , Homeostase , Humanos , Espécies Reativas de Oxigênio/metabolismoRESUMO
Skin is one of the main targets for reactive oxygen species; thus, reactive oxygen species-induced damage and protein and lipid modifications occur, and skin can undergo a wide array of diseases, from photosensitivity to cancer. In this study, human dermal fibroblasts exposed to hydrogen peroxide (0-1000 micromol/L) exhibited a marked increase in both protein carbonyls and 4-hydroxy-2-nonenal, which are indices of protein and lipid oxidation, respectively. An amount of 25 micromol/L ferulic acid ethyl ester, a well-known nutritional antioxidant, significantly counteracted both protein and lipid oxidation and reduced the loss in cell viability elicited by 500 micromol/L of hydrogen peroxide. A common way for cells to react to oxidative stress is up-regulation of vitagenes. To the vitagene family belong the heat shock proteins heme oxygenase-1 and heat shock protein-70, which are involved in the cellular defense against oxidative stress by different mechanisms. The administration of 25 micromol/L ferulic acid ethyl ester significantly decreased hydrogen peroxide-induced protein and lipid oxidation. Dermal fibroblasts exposed to 25 micromol/L ferulic acid ethyl ester in the presence of 500 micromol/L hydrogen peroxide showed an increased level of both heme oxygenase-1 and heat shock protein-70 compared with dermal fibroblasts treated with hydrogen peroxide alone. These findings provide evidence for the protective role of vitagenes in free radical-induced skin damage and highlight the potential protective use of nutritional antioxidants, such as ferulic acid and its derivatives.
Assuntos
Antioxidantes/farmacologia , Ácidos Cafeicos/farmacologia , Fibroblastos/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Heme Oxigenase-1/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pele/citologia , Células Cultivadas , Humanos , Peróxido de Hidrogênio/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacosRESUMO
Multiple drivers of the double burden of malnutrition (DBM) include a rapid shift from predominantly plant-based diets to energy-dense foods based on meats, milk, animal fats and vegetable oils. The shift to overweight and obesity is driven by increased exposure to mass media, urbanization, technological advances in food processing, rising income and increased population density associated with increased access to cheap foods. At the same time, undernutrition persists mainly due to food insecurity and lack of access to safe water, sanitation and adequate health care. All known nutrition interventions result in only one third reduction in stunting. Little consideration has been given to hazardous exposure to endocrine disrupting chemicals (EDCs) and microbial toxins as major components of the malnutrition-causal framework. These hazards include microbial toxins, for example, mycotoxins, and environmental pollutants such as persistent organic pollutants (POPs), some of which are known to disrupt the endocrine system. These hazards sit at the cross road of undernutrition and overweight and obesity since the exposure cuts across the critical window of opportunity (the first 1000 days). In this review, we update on the role of food and environmental contaminants, especially EDCs and aflatoxins, in child growth and on the implications for metabolic dysfunction and disease risk in later life, and discuss potential applications of nuclear and isotopic techniques to elucidate the underlying biological mechanisms, outcome indicators, as well as occurrence levels.
Assuntos
Disruptores Endócrinos/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Contaminação de Alimentos , Marcação por Isótopo/métodos , Desnutrição/induzido quimicamente , Micotoxinas/efeitos adversos , Estado Nutricional/efeitos dos fármacos , Obesidade/induzido quimicamente , Adulto , Aflatoxinas/efeitos adversos , Fatores Etários , Animais , Criança , Desenvolvimento Infantil/efeitos dos fármacos , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Desnutrição/fisiopatologia , Exposição Materna/efeitos adversos , Obesidade/fisiopatologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Medição de RiscoRESUMO
Oxidative stress has been suggested to play a main role in the pathogenesis of type 2 diabetes mellitus and its complications. As a consequence of this increased oxidative status, a cellular-adaptive response occurs requiring functional chaperones, antioxidant production, and protein degradation. This study was designed to evaluate systemic oxidative stress and cellular stress response in patients suffering from type 2 diabetes-induced nephropathy and in age-matched healthy subjects. Systemic oxidative stress has been evaluated by measuring advanced glycation end-products (pentosidine), protein oxidation (protein carbonyls [DNPH]), and lipid oxidation (4-hydroxy-2-nonenal [HNE] and F2-isoprostanes) in plasma, lymphocytes, and urine, whereas the lymphocyte levels of the heat shock proteins (Hsps) heme oxygenase-1 (HO-1), Hsp70, and Hsp60 as well as thioredoxin reductase-1 (TrxR-1) have been measured to evaluate the systemic cellular stress response. We found increased levels of pentosidine (P < 0.01), DNPH (P < 0.05 and P < 0.01), HNE (P < 0.05 and P < 0.01), and F2-isoprostanes (P < 0.01) in all the samples from type 2 diabetic patients with nephropathy with respect to control group. This was paralleled by a significant induction of cellular HO-1, Hsp60, Hsp70, and TrxR-1 (P < 0.05 and P < 0.01). A significant upregulation of both HO-1 and Hsp70 has been detected also in lymphocytes from type 2 diabetic patients without uraemia. Significant positive correlations between DNPH and Hsp60, as well as between the degree of renal failure and HO-1 or Hsp70, also have been found in diabetic uremic subjects. In conclusion, patients affected by type 2 diabetes complicated with nephropathy are under condition of systemic oxidative stress, and the induction of Hsp and TrxR-1 is a maintained response in counteracting the intracellular pro-oxidant status.
Assuntos
Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Estresse Oxidativo , Aldeídos/sangue , Arginina/análogos & derivados , Arginina/sangue , Arginina/urina , Chaperonina 60/metabolismo , Nefropatias Diabéticas/enzimologia , F2-Isoprostanos/sangue , F2-Isoprostanos/urina , Feminino , Proteínas de Choque Térmico HSP70/metabolismo , Resposta ao Choque Térmico , Heme Oxigenase-1/metabolismo , Humanos , Linfócitos/metabolismo , Lisina/análogos & derivados , Lisina/sangue , Lisina/urina , Masculino , Pessoa de Meia-Idade , Carbonilação Proteica , Insuficiência Renal/patologia , Tiorredoxina Redutase 1/metabolismoRESUMO
BACKGROUND: Prevention of IgE-binding to cellular IgE-receptors by anti-IgE (Omalizumab) is clinically effective in allergic asthma, but limited by IgE threshold-levels. To overcome this limitation, we developed a single-use IgE immunoadsorber column (IgEnio). IgEnio is based on a recombinant, IgE-specific antibody fragment and can be used for the specific extracorporeal desorption of IgE. OBJECTIVE: To study safety and efficacy of IgEnio regarding the selective depletion of IgE in a randomized, open-label, controlled pilot trial in patients with allergic asthma and to investigate if IgEnio can bind IgE-Omalizumab immune complexes. METHODS: Fifteen subjects were enrolled and randomly assigned to the treatment group (n=10) or to the control group (n=5). Immunoadsorption was done by veno-venous approach, processing the twofold calculated plasma volume during each treatment. A minimum average IgE-depletion of 50% after the last cycle in the intention-to-treat population was defined as primary endpoint. Safety of the treatment was studied as secondary endpoint. In addition, possible changes in allergen-specific sensitivity were investigated, as well as clinical effects by peak flow measurement and symptom-recording. The depletion of IgE-Omalizumab immune complexes was studied in vitro. The study was registered at clinicaltrials.gov (NCT02096237) and conducted from December 2013 to July 2014. RESULTS: IgE immunoadsorption with IgEnio selectively depleted 86.2% (±5.1% SD) of IgE until the end of the last cycle (p<0.0001). Removal of pollen allergen-specific IgE was associated with a reduction of allergen-specific basophil-sensitivity and prevented increases of allergen-specific skin-sensitivity and clinical symptoms during pollen seasons. IgEnio also depleted IgE-Omalizumab immune complexes in vitro. The therapy under investigation was safe and well-tolerated. During a total of 81 aphereses, 2 severe adverse events (SAE) were recorded, one of which, an episode of acute dyspnea, possibly was related to the treatment and resolved after administration of antihistamines and corticosteroids. CONCLUSIONS: This pilot study indicates that IgE immunoadsorption with IgEnio may be used to treat patients with pollen-induced allergic asthma. Furthermore, the treatment could render allergic patients with highly elevated IgE-levels eligible for the administration of Omalizumab and facilitate the desorption of IgE-Omalizumab complexes. This study was funded by Fresenius Medical Care Deutschland GmbH, Bad Homburg, Germany.
Assuntos
Asma/terapia , Remoção de Componentes Sanguíneos/métodos , Imunoglobulina E/sangue , Técnicas de Imunoadsorção/efeitos adversos , Adolescente , Adulto , Antiasmáticos/imunologia , Asma/sangue , Remoção de Componentes Sanguíneos/efeitos adversos , Remoção de Componentes Sanguíneos/instrumentação , Feminino , Humanos , Imunoglobulina E/imunologia , Técnicas de Imunoadsorção/instrumentação , Masculino , Pessoa de Meia-Idade , Omalizumab/imunologiaRESUMO
BACKGROUND: We have constructed and clinically evaluated a hypoallergenic vaccine for grass pollen allergy, BM32, which is based on fusion proteins consisting of peptides from the IgE binding sites of the major grass pollen allergens fused to preS (preS1+preS2), a domain of the hepatitis B virus (HBV) large envelope protein which mediates the viral attachment and entry. Aim of this study was the characterization of the HBV-specific immune response induced by vaccination of allergic patients with BM32 and the investigation of the vaccines' potential to protect against infection with HBV. METHODS: Hepatitis B-specific antibody and T cell responses of patients vaccinated with BM32 were studied using recombinant preS and synthetic overlapping peptides spanning the preS sequence. The specificities of the antibody responses were compared with those of patients with chronic HBV infection. Furthermore, the capacity of BM32-induced antibodies, to inhibit HBV infection was investigated using HepG2-hNTCP cell-based in vitro virus neutralization assays. FINDINGS: IgG antibodies from BM32-vaccinated but not of HBV-infected individuals recognized the sequence motif implicated in NTCP (sodium-taurocholate co-transporting polypeptide)-receptor interaction of the hepatitis B virus and inhibited HBV infection. INTERPRETATION: Our study demonstrates that the recombinant hypoallergenic grass pollen allergy vaccine BM32 induces hepatitis B-specific immune responses which protect against hepatitis B virus infection in vitro.
Assuntos
Anticorpos Anti-Hepatite B/imunologia , Antígenos de Superfície da Hepatite B/imunologia , Vacinas contra Hepatite B/imunologia , Vírus da Hepatite B/imunologia , Hepatite B/imunologia , Hepatite B/prevenção & controle , Imunoterapia , Pólen/imunologia , Proteínas Recombinantes de Fusão/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais , Especificidade de Anticorpos , Modelos Animais de Doenças , Feminino , Antígenos de Superfície da Hepatite B/genética , Humanos , Esquemas de Imunização , Imunoglobulina E/imunologia , Imunoglobulina G/imunologia , Imunoterapia/métodos , Masculino , Camundongos , Testes de Neutralização , Pólen/genética , Coelhos , Proteínas Recombinantes de Fusão/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , VacinaçãoRESUMO
Alzheimer's disease (AD) is the most common neurodegenerative disorder. Its neuropathological hallmarks include deposition of beta amyloid (Aß) fibrils in senile plaques. Numerous biochemical events, leading to Aß neurotoxicity in AD, have been proposed and it seems that neuroinflammation plays a prominent role among these. Thus, since inflammatory processes and oxidative stress are considered to play an important role in neuroinflammatory disorders and in AD pathology, in the present work we decided to test a new composite, which is a formulation constituted of an anti-inflammatory compound such as palmitoylethanolamide (PEA) and the well recognized antioxidant flavonoid luteolin (Lut), subjected to an ultra-micronization process, here designated co-ultraPEALut. We investigated the effect of co-ultraPEALut in both an in vitro and ex vivo organotypic model of AD. For the in vitro model, we used human neuronal cells, obtained by differentiating SH-SY5Y neuroblastoma cells into sustainable neuronal morphology. These well differentiated cells express features specific to mature neurons, such as synaptic structures and functional axonal vesicle transport, making this new concept for in vitro differentiation valuable for many neuroscientific research areas, including AD. Differentiated SH-SY5Y cells were pre-treated with co-ultraPEALut (reference concentrations: 27, 2.7 and 0.27 µM PEA) for 2 h. AD features were induced by Aß1â42 stimulation (1 µM). Twenty-four hours later cell vitality was evaluated by the colorimetric MTT assay, whereas the neuroinflammation underling AD was observed by Western blot analysis for IκBα degradation and nuclear factor-κB traslocation, as well as glial fibrillary acidic protein expression. For the organotypic model of AD, hippocampal slice cultures were prepared from mice at postnatal day 6 and after 21 days of culturing the slices were pre-treated with co-ultraPEALut (reference concentrations: 27, 2.7 and 0.27 µM PEA) for 2 h and then incubated with Aß1â42 (1 µg/ml) for 24 h. Pre-treatment with co-ultraPEALut significantly reduced inducible nitric oxide synthase and glial fibrillary acidic protein expression, restored neuronal nitric oxide synthase and brainderived neurotrophic factor and reduced the apoptosis. Taken together our results clearly showed that co-ultraPEALut is able to blunt Aß-induced astrocyte activation and to exert a marked protective effect on glial cells. These findings suggest that the association of co-ultraPEALut may provide an effective strategy for AD.
Assuntos
Dano ao DNA/efeitos dos fármacos , Etanolaminas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Luteolina/farmacologia , Fármacos Neuroprotetores/farmacologia , Ácidos Palmíticos/farmacologia , Amidas , Peptídeos beta-Amiloides/toxicidade , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Interações Medicamentosas , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/ultraestrutura , Humanos , Proteínas I-kappa B/metabolismo , Técnicas In Vitro , Camundongos , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Neuroblastoma/patologia , Nitritos/metabolismo , Técnicas de Cultura de Órgãos , Fragmentos de Peptídeos/toxicidadeRESUMO
Alzheimer's disease (AD) and osteoporosis are multifactorial progressive degenerative disorders. Increasing evidence shows that osteoporosis and hip fracture are common complication observed in AD patients, although the mechanisms underlying this association remain poorly understood. Reactive oxygen species (ROS) are emerging as intracellular redox signaling molecules involved in the regulation of bone metabolism, including receptor activator of nuclear factor-κB ligand-dependent osteoclast differentiation, but they also have cytotoxic effects that include lipoperoxidation and oxidative damage to proteins and DNA. ROS generation, which is implicated in the regulation of cellular stress response mechanisms, is an integrated, highly regulated, process under control of redox sensitive genes coding for redox proteins called vitagenes. Vitagenes, encoding for proteins such as heat shock proteins (Hsps) Hsp32, Hsp70, the thioredoxin, and the sirtuin protein, represent a systems controlling a complex network of intracellular signaling pathways relevant to life span and involved in the preservation of cellular homeostasis under stress conditions. Consistently, nutritional anti-oxidants have demonstrated their neuroprotective potential through a hormetic-dependent activation of vitagenes. The biological relevance of dose-response affects those strategies pointing to the optimal dosing to patients in the treatment of numerous diseases. Thus, the heat shock response has become an important hormetic target for novel cytoprotective strategies focusing on the pharmacological development of compounds capable of modulating stress response mechanisms. Here we discuss possible signaling mechanisms involved in the activation of vitagenes which, relevant to bone remodeling and through enhancement of cellular stress resistance provide a rationale to limit the deleterious consequences associated to homeostasis disruption with consequent impact on the aging process.
RESUMO
Amyloid deposits, constituted of amyloid beta (Aß) aggregates, are a characteristic feature of several neurodegenerative diseases, such as Alzheimer's, mild cognitive impairment and Parkinson's disease. They also have been recently implicated in the pathogenesis of retinal damage, as well as age-related macular degeneration and glaucoma. Glaucoma is a progressive optic neuropathy characterized by gradual degeneration of neuronal tissue due to retinal ganglion cell loss, associated to visual field loss over time resulting in irreversible blindness. Accumulation of Aß characterizes glaucoma as a protein misfolding disease, suggesting a pathogenic role for oxidative stress in the pathogenesis of retinal degenerative damage associated to glaucoma. There is a growing body of evidence demonstrating a link between Alzheimer's disease and glaucoma. Further, several heat shock proteins (HSPs) members have been implicated both in neurodegenerative diseases and glaucomatous apoptosis. To maintain redox homeostasis vitagenes, as integrated mechanisms, operate actively to preserve cell survival under condition of stress. Vitagenes encode for sirtuin, thioredoxin and HSPs. The present study was designed to investigate cellular stress response mechanisms in the blood of patients with glaucoma, compared to control subjects. Levels of vitagenes HSP-72, heme oxygenase-1, as well as F2-isoprostanes were significantly higher in the blood of patients with glaucoma than in controls. Furthermore, in the same experimental group increased expression of Trx and sirtuin 1 were measured. Our results sustain the importance of redox homeostasis disruption in the pathogenesis of glaucoma and highlights the opportunity that new therapies that prevents neurodegeneration through non-immunomodulatory mechanisms might be synergistically associated with current glaucoma therapies, thus unraveling important targets for novel cytoprotective strategies.