Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 99: 117597, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38262305

RESUMO

Ten-Eleven Translocation (TET) enzymes are Fe(II)/2OG-dependent oxygenases that play important roles in epigenetic regulation, but selective inhibition of the TETs is an unmet challenge. We describe the profiling of previously identified TET1-binding macrocyclic peptides. TiP1 is established as a potent TET1 inhibitor (IC50 = 0.26 µM) with excellent selectivity over other TETs and 2OG oxygenases. TiP1 alanine scanning reveals the critical roles of Trp10 and Glu11 residues for inhibition of TET isoenzymes. The results highlight the utility of the RaPID method to identify potent enzyme inhibitors with selectivity over closely related paralogues. The structure-activity relationship data generated herein may find utility in the development of chemical probes for the TETs.


Assuntos
Dioxigenases , Peptídeos Cíclicos , Humanos , Epigênese Genética , Proteínas de Ligação a DNA/metabolismo , Oxigenases de Função Mista/metabolismo , Dioxigenases/metabolismo , Metilação de DNA , Proteínas Proto-Oncogênicas
2.
Angew Chem Int Ed Engl ; : e202410438, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923188

RESUMO

In animals, limiting oxygen upregulates the hypoxia-inducible factor (HIF) and promotes a metabolic shift towards glycolysis. Factor inhibiting HIF (FIH) is an asparaginyl hydroxylase that regulates HIF function by reducing its interaction with histone acetyl transferases. HIF levels are negatively regulated by the HIF prolyl hydroxylases (PHDs) which, like FIH, are 2-oxoglutarate (2OG) oxygenases. Genetic loss of FIH promotes both glycolysis and aerobic metabolism. FIH has multiple non-HIF substrates making it challenging to connect its biochemistry with physiology. A structure-mechanism guided approach identified a highly potent in vivo active FIH inhibitor, ZG-2291, the binding of which promotes a conformational flip of a catalytically important tyrosine, enabling the selective inhibition of FIH over other Jumonji C subfamily 2OG oxygenases. Consistent with genetic studies, ZG-2291 promotes thermogenesis and ameliorates symptoms of obesity and metabolic dysfunction in ob/ob mice. The results reveal ZG-2291 as a useful probe for the physiological functions of FIH and identify FIH inhibition as a promising strategy for obesity treatment.

3.
RSC Chem Biol ; 4(6): 399-413, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37292060

RESUMO

Jumonji-C (JmjC) domain-containing protein 5 (JMJD5) is a human 2-oxoglutarate (2OG) and Fe(ii)-dependent oxygenase which catalyses the post-translational C3 hydroxylation of arginyl-residues and which is linked to the circadian rhythm and to cancer biology through as yet unidentified mechanisms. We report robust solid phase extraction coupled to mass spectrometry (SPE-MS)-based JMJD5 assays which enable kinetic and high-throughput inhibition studies. The kinetic studies reveal that some synthetic 2OG derivatives, notably including a 2OG derivative with a cyclic carbon backbone (i.e. (1R)-3-(carboxycarbonyl)cyclopentane-1-carboxylic acid), are efficient alternative cosubstrates of JMJD5 and of factor inhibiting hypoxia-inducible transcription factor HIF-α (FIH), but not of the Jumonji-C (JmjC) histone Nε-methyl lysine demethylase KDM4E, apparently reflecting the closer structural similarity of JMJD5 and FIH. The JMJD5 inhibition assays were validated by investigating the effect of reported 2OG oxygenase inhibitors on JMJD5 catalysis; the results reveal that broad-spectrum 2OG oxygenase inhibitors are also efficient JMJD5 inhibitors (e.g. N-oxalylglycine, pyridine-2,4-dicarboxylic acid, ebselen) whereas most 2OG oxygenase inhibitors that are in clinical use (e.g. roxadustat) do not inhibit JMJD5. The SPE-MS assays will help enable the development of efficient and selective JMJD5 inhibitors for investigating the biochemical functions of JMJD5 in cellular studies.

4.
Chem Sci ; 14(43): 12098-12120, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37969593

RESUMO

The human 2-oxoglutarate (2OG)- and Fe(ii)-dependent oxygenases factor inhibiting hypoxia-inducible factor-α (FIH) and HIF-α prolyl residue hydroxylases 1-3 (PHD1-3) regulate the response to hypoxia in humans via catalysing hydroxylation of the α-subunits of the hypoxia-inducible factors (HIFs). Small-molecule PHD inhibitors are used for anaemia treatment; by contrast, few selective inhibitors of FIH have been reported, despite their potential to regulate the hypoxic response, either alone or in combination with PHD inhibition. We report molecular, biophysical, and cellular evidence that the N-hydroxythiazole scaffold, reported to inhibit PHD2, is a useful broad spectrum 2OG oxygenase inhibitor scaffold, the inhibition potential of which can be tuned to achieve selective FIH inhibition. Structure-guided optimisation resulted in the discovery of N-hydroxythiazole derivatives that manifest substantially improved selectivity for FIH inhibition over PHD2 and other 2OG oxygenases, including Jumonji-C domain-containing protein 5 (∼25-fold), aspartate/asparagine-ß-hydroxylase (>100-fold) and histone Nε-lysine demethylase 4A (>300-fold). The optimised N-hydroxythiazole-based FIH inhibitors modulate the expression of FIH-dependent HIF target genes and, consistent with reports that FIH regulates cellular metabolism, suppressed lipid accumulation in adipocytes. Crystallographic studies reveal that the N-hydroxythiazole derivatives compete with both 2OG and the substrate for binding to the FIH active site. Derivatisation of the N-hydroxythiazole scaffold has the potential to afford selective inhibitors for 2OG oxygenases other than FIH.

5.
J Med Chem ; 66(15): 10849-10865, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37527664

RESUMO

Jumonji-C domain-containing protein 5 (JMJD5) is a 2-oxoglutarate (2OG)-dependent oxygenase that plays important roles in development, circadian rhythm, and cancer through unclear mechanisms. JMJD5 has been reported to have activity as a histone protease, as an Nε-methyl lysine demethylase, and as an arginine residue hydroxylase. Small-molecule JMJD5-selective inhibitors will be useful for investigating its (patho)physiological roles. Following the observation that the broad-spectrum 2OG oxygenase inhibitor pyridine-2,4-dicarboxylic acid (2,4-PDCA) is a 2OG-competing JMJD5 inhibitor, we report that 5-aminoalkyl-substituted 2,4-PDCA derivatives are potent JMJD5 inhibitors manifesting selectivity for JMJD5 over other human 2OG oxygenases. Crystallographic analyses with five inhibitors imply induced fit binding and reveal that the 2,4-PDCA C5 substituent orients into the JMJD5 substrate-binding pocket. Cellular studies indicate that the lead compounds display similar phenotypes as reported for clinically observed JMJD5 variants, which have a reduced catalytic activity compared to wild-type JMJD5.


Assuntos
Histonas , Neoplasias , Humanos , Ritmo Circadiano , Piridinas/farmacologia , Oxigenases/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA