Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(12): 3072-3089.e20, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38781967

RESUMO

Tissue folds are structural motifs critical to organ function. In the intestine, bending of a flat epithelium into a periodic pattern of folds gives rise to villi, finger-like protrusions that enable nutrient absorption. However, the molecular and mechanical processes driving villus morphogenesis remain unclear. Here, we identify an active mechanical mechanism that simultaneously patterns and folds the intestinal epithelium to initiate villus formation. At the cellular level, we find that PDGFRA+ subepithelial mesenchymal cells generate myosin II-dependent forces sufficient to produce patterned curvature in neighboring tissue interfaces. This symmetry-breaking process requires altered cell and extracellular matrix interactions that are enabled by matrix metalloproteinase-mediated tissue fluidization. Computational models, together with in vitro and in vivo experiments, revealed that these cellular features manifest at the tissue level as differences in interfacial tensions that promote mesenchymal aggregation and interface bending through a process analogous to the active dewetting of a thin liquid film.


Assuntos
Matriz Extracelular , Mucosa Intestinal , Animais , Camundongos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citologia , Matriz Extracelular/metabolismo , Miosina Tipo II/metabolismo , Mesoderma/metabolismo , Mesoderma/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Morfogênese , Metaloproteinases da Matriz/metabolismo
2.
Dev Biol ; 474: 82-90, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33333067

RESUMO

Breaking embryonic symmetry is an essential prerequisite to shape the initially symmetric embryo into a highly organized body plan that serves as the blueprint of the adult organism. This critical process is driven by morphogen signaling gradients that instruct anteroposterior axis specification. Despite its fundamental importance, what triggers symmetry breaking and how the signaling gradients are established in time and space in the mammalian embryo remain largely unknown. Stem cell-based in vitro models of embryogenesis offer an unprecedented opportunity to quantitatively dissect the multiple physical and molecular processes that shape the mammalian embryo. Here we review biochemical mechanisms governing early mammalian patterning in vivo and highlight recent advances to recreate this in vitro using stem cells. We discuss how the novel insights from these model systems extend previously proposed concepts to illuminate the extent to which embryonic cells have the intrinsic capability to generate specific, reproducible patterns during embryogenesis.


Assuntos
Desenvolvimento Embrionário , Morfogênese , Animais , Padronização Corporal , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Humanos , Camundongos , Transdução de Sinais , Células-Tronco/citologia
4.
bioRxiv ; 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37425793

RESUMO

Tissue folding generates structural motifs critical to organ function. In the intestine, bending of a flat epithelium into a periodic pattern of folds gives rise to villi, the numerous finger-like protrusions that are essential for nutrient absorption. However, the molecular and mechanical mechanisms driving the initiation and morphogenesis of villi remain a matter of debate. Here, we identify an active mechanical mechanism that simultaneously patterns and folds intestinal villi. We find that PDGFRA+ subepithelial mesenchymal cells generate myosin II-dependent forces sufficient to produce patterned curvature in neighboring tissue interfaces. At the cell-level, this occurs through a process dependent upon matrix metalloproteinase-mediated tissue fluidization and altered cell-ECM adhesion. By combining computational models with in vivo experiments, we reveal these cellular features manifest at the tissue-level as differences in interfacial tensions that promote mesenchymal aggregation and interface bending through a process analogous to the active de-wetting of a thin liquid film.

5.
Curr Opin Genet Dev ; 76: 101970, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988317

RESUMO

Synthetic embryology aims to develop embryo-like structures from stem cells to provide new insight into early stages of mammalian development. Recent advances in synthetic embryology have highlighted the remarkable capacity of stem cells to self-organize under certain biochemical or biophysical stimulations, generating structures that recapitulate the fate and form of early mouse/human embryos, in which symmetry breaking, pattern formation, or proper morphogenesis can be observed spontaneously. Here we review recent progress on the design principles for different types of embryoids and discuss the impact of different biochemical and biophysical factors on the process of stem-cell self-organization. We also offer our thoughts about the principal future challenges.


Assuntos
Embrião de Mamíferos , Células-Tronco , Animais , Desenvolvimento Embrionário/genética , Humanos , Mamíferos , Camundongos , Morfogênese
6.
Nat Cell Biol ; 24(9): 1341-1349, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36100738

RESUMO

Mammalian embryos sequentially differentiate into trophectoderm and an inner cell mass, the latter of which differentiates into primitive endoderm and epiblast. Trophoblast stem (TS), extraembryonic endoderm (XEN) and embryonic stem (ES) cells derived from these three lineages can self-assemble into synthetic embryos, but the mechanisms remain unknown. Here, we show that a stem cell-specific cadherin code drives synthetic embryogenesis. The XEN cell cadherin code enables XEN cell sorting into a layer below ES cells, recapitulating the sorting of epiblast and primitive endoderm before implantation. The TS cell cadherin code enables TS cell sorting above ES cells, resembling extraembryonic ectoderm clustering above epiblast following implantation. Whereas differential cadherin expression drives initial cell sorting, cortical tension consolidates tissue organization. By optimizing cadherin code expression in different stem cell lines, we tripled the frequency of correctly formed synthetic embryos. Thus, by exploiting cadherin codes from different stages of development, lineage-specific stem cells bypass the preimplantation structure to directly assemble a postimplantation embryo.


Assuntos
Caderinas , Endoderma , Mamíferos/embriologia , Animais , Blastocisto , Caderinas/genética , Caderinas/metabolismo , Células-Tronco Embrionárias/metabolismo , Camadas Germinativas
7.
Science ; 370(6522)2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33303584

RESUMO

Embryo polarization is critical for mouse development; however, neither the regulatory clock nor the molecular trigger that it activates is known. Here, we show that the embryo polarization clock reflects the onset of zygotic genome activation, and we identify three factors required to trigger polarization. Advancing the timing of transcription factor AP-2 gamma (Tfap2c) and TEA domain transcription factor 4 (Tead4) expression in the presence of activated Ras homolog family member A (RhoA) induces precocious polarization as well as subsequent cell fate specification and morphogenesis. Tfap2c and Tead4 induce expression of actin regulators that control the recruitment of apical proteins on the membrane, whereas RhoA regulates their lateral mobility, allowing the emergence of the apical domain. Thus, Tfap2c, Tead4, and RhoA are regulators for the onset of polarization and cell fate segregation in the mouse.


Assuntos
Relógios Biológicos/fisiologia , Blastocisto/fisiologia , Polaridade Celular/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas Musculares/fisiologia , Fator de Transcrição AP-2/fisiologia , Fatores de Transcrição/fisiologia , Proteína rhoA de Ligação ao GTP/fisiologia , Actinas/metabolismo , Animais , Relógios Biológicos/genética , Blastocisto/citologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Polaridade Celular/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/genética , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Feminino , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Interferência de RNA , Fatores de Transcrição de Domínio TEA , Fator de Transcrição AP-2/genética , Fatores de Transcrição/genética , Proteína rhoA de Ligação ao GTP/genética
8.
Cells ; 9(7)2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32659915

RESUMO

The development of multicellular organisms proceeds through a series of morphogenetic and cell-state transitions, transforming homogeneous zygotes into complex adults by a process of self-organisation. Many of these transitions are achieved by spontaneous symmetry breaking mechanisms, allowing cells and tissues to acquire pattern and polarity by virtue of local interactions without an upstream supply of information. The combined work of theory and experiment has elucidated how these systems break symmetry during developmental transitions. Given that such transitions are multiple and their temporal ordering is crucial, an equally important question is how these developmental transitions are coordinated in time. Using a minimal mass-conserved substrate-depletion model for symmetry breaking as our case study, we elucidate mechanisms by which cells and tissues can couple reaction-diffusion-driven symmetry breaking to the timing of developmental transitions, arguing that the dependence of patterning mode on system size may be a generic principle by which developing organisms measure time. By analysing different regimes of our model, simulated on growing domains, we elaborate three distinct behaviours, allowing for clock-, timer- or switch-like dynamics. Relating these behaviours to experimentally documented case studies of developmental timing, we provide a minimal conceptual framework to interrogate how developing organisms coordinate developmental transitions.


Assuntos
Padronização Corporal/fisiologia , Padronização Corporal/genética , Polaridade Celular/genética , Polaridade Celular/fisiologia , Humanos , Modelos Biológicos
10.
Natl Sci Rev ; 7(9): 1447-1448, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32983580
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA