Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 23(2): 633-643, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38183416

RESUMO

One of the main challenges in compiling the complete collection of protein antigens from pathogens for the selection of vaccine candidates or intervention targets is to acquire a broad enough representation of them to be recognized by the highly diversified immunoglobulin repertoire in human populations. Dried serum spot sampling (DSS) retains a large repertoire of circulating immunoglobulins from each individual that can be representative of a population, according to the sample size. In this work, shotgun proteomics of an infectious pathogen based on DSS sampling coupled with IgM immunoprecipitation, liquid chromatography-mass spectrometry (LC-MS/MS), and bioinformatic analyses was combined to characterize the circulating IgM antigenome. Serum samples from a malaria endemic region at different clinical statuses were studied to optimize IgM binding efficiency and antibody leaching by varying serum/immunomagnetic bead ratios and elution conditions. The method was validated using Plasmodium falciparum extracts identifying 110 of its IgM-reactive antigens while minimizing the presence of human proteins and antibodies. Furthermore, the IgM antigen recognition profile differentiated between malaria-infected and noninfected individuals at the time of sampling. We conclude that a shotgun proteomics approach offers advantages in providing a high-throughput, reliable, and clean way to identify IgM-recognized antigens from trace amounts of serum. The mass spectrometry raw data and metadata have been deposited with ProteomeXchange via MassIVE with the PXD identifier PXD043800.


Assuntos
Doenças Transmissíveis , Malária , Humanos , Espectrometria de Massa com Cromatografia Líquida , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Imunoglobulina M
2.
Front Immunol ; 14: 1198609, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520552

RESUMO

Research on bovine neosporosis has achieved relevant milestones, but the mechanisms underlying the occurrence of foetal death or protection against foetal death remain unclear. In a recent study, placentas from heifers challenged with the high-virulence isolate Nc-Spain7 exhibited focal necrosis and inflammatory infiltrates as soon as 10 days post-infection (dpi), although parasite detection was minimal. These lesions were more frequent at 20 dpi, coinciding with higher rates of parasite detection and the occurrence of foetal death in some animals. In contrast, such lesions were not observed in placentas from animals infected with the low-virulence isolate Nc-Spain1H, where the parasite was detected only in placenta from one animal at 20 dpi. This work aimed to study which mechanisms are triggered in the placentas (caruncles and cotyledons) of these pregnant heifers at early stages of infection (10 and 20 dpi) through whole-transcriptome analysis. In caruncles, infection with the high-virulence isolate provoked a strong proinflammatory response at 10 dpi. This effect was not observed in heifers infected with the low-virulence isolate, where IL-6/JAK/STAT3 signalling and TNF-alpha signalling via NF-κB pathways were down-regulated. Interestingly, the expression of E2F target genes, related to restraining the inflammatory response, was higher in these animals. At 20 dpi, more pronounced proinflammatory gene signatures were detectable in heifers infected with the high-virulence isolate, being more intense in heifers carrying dead fetuses. However, the low-virulence isolate continued without activating the proinflammatory response. In cotyledons, the response to infection with the high-virulence isolate was similar to that observed in caruncles; however, the low-virulence isolate induced mild proinflammatory signals at 20 dpi. Finally, a deconvolutional analysis of gene signatures from both placentome tissues revealed a markedly higher fraction of activated natural killers, M1 macrophages and CD8+ T cells for the high-virulence isolate. Therefore, our transcriptomic analysis supports the hypothesis that an intense immune response probably triggered by parasite multiplication could be a key contributor to abortion. Further studies are required to determine the parasite effectors that govern the distinct interactions of high- and low-virulence isolates with the host, which could help elucidate the molecular processes underlying the pathogenesis of neosporosis in cattle.


Assuntos
Neospora , Gravidez , Humanos , Bovinos , Animais , Feminino , Virulência , Placenta/patologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Morte Fetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA