Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Coleções SMS-SP
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108380

RESUMO

Understanding the physiological and molecular adjustments occurring during tree stress response is of great importance for forest management and breeding programs. Somatic embryogenesis has been used as a model system to analyze various processes occurring during embryo development, including stress response mechanisms. In addition, "priming" plants with heat stress during somatic embryogenesis seems to favor the acquisition of plant resilience to extreme temperature conditions. In this sense, Pinus halepensis somatic embryogenesis was induced under different heat stress treatments (40 °C for 4 h, 50 °C for 30 min, and 60 °C for 5 min) and its effects on the proteome and the relative concentration of soluble sugars, sugar alcohols and amino acids of the embryonal masses obtained were assessed. Heat severely affected the production of proteins, and 27 proteins related to heat stress response were identified; the majority of the proteins with increased amounts in embryonal masses induced at higher temperatures consisted of enzymes involved in the regulation of metabolism (glycolysis, the tricarboxylic acid cycle, amino acid biosynthesis and flavonoids formation), DNA binding, cell division, transcription regulation and the life-cycle of proteins. Finally, significant differences in the concentrations of sucrose and amino acids, such as glutamine, glycine and cysteine, were found.


Assuntos
Pinus , Pinus/genética , Proteômica , Melhoramento Vegetal , Resposta ao Choque Térmico , Aminoácidos/metabolismo
2.
Clin Exp Ophthalmol ; 46(7): 783-795, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29442423

RESUMO

BACKGROUND: Neuropeptide Y (NPY) is a neuromodulator that is expressed in the retina. Increasing evidence suggests that NPY has pronounced anti-inflammatory effects, which might depend on the inhibition of dipeptidyl-peptidase-IV (DPP-IV). The aim of this study was to investigate the impact of type 1 diabetes mellitus (DM) and sitagliptin, a DPP-IV inhibitor, on the NPY system in the retina using an animal model. METHODS: Type 1 DM was induced in male Wistar rats by an intraperitoneal injection of streptozotocin. Starting 2 weeks after DM onset, animals were treated orally with sitagliptin (5 mg/kg.day) for 2 weeks. The expression of NPY and NPY receptors (Y1 , Y2 and Y5 receptors) was measured by quantitative polymerase chain reaction, Western blot and/or enzyme-linked immunosorbent assay. The immunoreactivity of NPY and NPY receptors was evaluated by immunohistochemistry, and the [35 S]GTPγS binding assay was used to assess the functional binding of NPY receptors. RESULTS: DM decreased the mRNA levels of NPY in the retina, as well as the protein levels of NPY and Y5 receptor. No changes were detected in the localization of NPY and NPY receptors in the retina and in the functional binding of NPY to all receptors. Sitagliptin alone reduced retinal NPY mRNA levels. The effects of DM on the NPY system were not affected by sitagliptin. CONCLUSION: DM modestly affects the NPY system in the retina and these effects are not prevented by sitagliptin treatment. These observations suggest that DPP-IV enzyme is not underlying the NPY changes detected in the retina induced by type 1 DM.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Retinopatia Diabética , Regulação da Expressão Gênica , Neuropeptídeo Y , Retina , Fosfato de Sitagliptina , Animais , Masculino , Ratos , Western Blotting , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/genética , Retinopatia Diabética/etiologia , Retinopatia Diabética/genética , Retinopatia Diabética/prevenção & controle , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Neuropeptídeo Y/biossíntese , Reação em Cadeia da Polimerase , Distribuição Aleatória , Ratos Wistar , Retina/metabolismo , Retina/patologia , RNA/genética , Fosfato de Sitagliptina/uso terapêutico
3.
Sci Data ; 11(1): 50, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191564

RESUMO

Building integrated photovoltaics is a promising strategy for solar technology, in which luminescent solar concentrators (LSCs) stand out. Challenges include the development of materials for sunlight harvesting and conversion, which is an iterative optimization process with several steps: synthesis, processing, and structural and optical characterizations before considering the energy generation figures of merit that requires a prototype fabrication. Thus, simulation models provide a valuable, cost-effective, and time-efficient alternative to experimental implementations, enabling researchers to gain valuable insights for informed decisions. We conducted a literature review on LSCs over the past 47 years from the Web of ScienceTM Core Collection, including published research conducted by our research group, to gather the optical features and identify the material classes that contribute to the performance. The dataset can be further expanded systematically offering a valuable resource for decision-making tools for device design without extensive experimental measurements.

4.
Sci Rep ; 14(1): 4160, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378849

RESUMO

Building-integrated photovoltaics (BIPV) is an emerging technology in the solar energy field. It involves using luminescent solar concentrators to convert traditional windows into energy generators by utilizing light harvesting and conversion materials. This study investigates the application of machine learning (ML) to advance the fundamental understanding of optical material design. By leveraging accessible photoluminescent measurements, ML models estimate optical properties, streamlining the process of developing novel materials, offering a cost-effective and efficient alternative to traditional methods, and facilitating the selection of competitive materials. Regression and clustering methods were used to estimate the optical conversion efficiency and power conversion efficiency. The regression models achieved a Mean Absolute Error (MAE) of 10%, which demonstrates accuracy within a 10% range of possible values. Both regression and clustering models showed high agreement, with a minimal MAE of 7%, highlighting the efficacy of ML in predicting optical properties of luminescent materials for BIPV.

5.
Plants (Basel) ; 13(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38475584

RESUMO

Phase change refers to the process of maturation and transition from the juvenile to the adult stage. In response to this shift, certain species like chestnut lose the ability to form adventitious roots, thereby hindering the successful micropropagation of adult plants. While auxin is the main hormone involved in adventitious root formation, other hormones, such as ethylene, are also thought to play a role in its induction and development. In this study, experiments were carried out to determine the effects of ethylene on the induction and growth of adventitious roots. The analysis was performed in two types of chestnut microshoots derived from the same tree, a juvenile-like line with a high rooting ability derived from basal shoots (P2BS) and a line derived from crown branches (P2CR) with low rooting responses. By means of the application of compounds to modify ethylene content or inhibit its signalling, the potential involvement of this hormone in the induction of adventitious roots was analysed. Our results show that ethylene can modify the rooting competence of mature shoots, while the response in juvenile material was barely affected. To further characterise the molecular reasons underlying this maturation-derived shift in behaviour, specific gene expression analyses were developed. The findings suggest that several mechanisms, including ethylene signalling, auxin transport and epigenetic modifications, relate to the modulation of the rooting ability of mature chestnut microshoots and their recalcitrant behaviour.

6.
EFSA J ; 22(1): e8517, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38213415

RESUMO

The qualified presumption of safety (QPS) process was developed to provide a safety assessment approach for microorganisms intended for use in food or feed chains. The QPS approach is based on an assessment of published data for each taxonomic unit (TU), with respect to its taxonomic identity, the body of relevant knowledge and safety concerns. Safety concerns identified for a TU are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'. In the period covered by this Statement, no new information was found that would change the status of previously recommended QPS TUs. Of 71 microorganisms notified to EFSA between April and September 2023 (30 as feed additives, 22 as food enzymes or additives, 7 as novel foods and 12 from plant protection products [PPP]), 61 were not evaluated because: 26 were filamentous fungi, 1 was Enterococcus faecium, 5 were Escherichia coli, 1 was a bacteriophage (all excluded from the QPS evaluation) and 28 were TUs that already have a QPS status. The other 10 notifications belonged to 9 TUs which were evaluated for a possible QPS status: Ensifer adhaerens and Heyndrickxia faecalis did not get the QPS recommendation due to the limited body of knowledge about their occurrence in the food and/or feed chains and Burkholderia ubonensis also due to its ability to generate biologically active compounds with antimicrobial activity; Klebsiella pneumoniae, Serratia marcescens and Pseudomonas putida due to safety concerns. K. pneumoniae is excluded from future QPS evaluations. Chlamydomonas reinhardtii is recommended for QPS status with the qualification 'for production purposes only'; Clostridium tyrobutyricum is recommended for QPS status with the qualification 'absence of genetic determinants for toxigenic activity'; Candida oleophila has been added as a synonym of Yarrowia lipolytica. The Panel clarifies the extension of the QPS status for genetically modified strains.

7.
Plants (Basel) ; 12(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37176912

RESUMO

In de novo shoot organogenesis (DNSO) plant cells develop into new shoots, without the need of an existing meristem. Generally, this process is triggered by wounding and specific growth regulators, such as auxins and cytokinins. Despite the potential significance of the plant hormone ethylene in DNSO, its effect in regeneration processes of woody species has not been thoroughly investigated. To address this gap, Solanum betaceum Cav. was used as an experimental model to explore the role of this hormone on DNSO and potentially extend the findings to other woody species. In this work it was shown that ethylene positively regulates DNSO from tamarillo leaf explants. Ethylene precursors ACC and ethephon stimulated shoot regeneration by increasing the number of buds and shoots regenerated. In contrast, the inhibition of ethylene biosynthesis or perception by AVG and AgNO3 decreased shoot regeneration. Organogenic callus induced in the presence of ethylene precursors showed an upregulated expression of the auxin efflux carrier gene PIN1, suggesting that ethylene may enhance shoot regeneration by affecting auxin distribution prior to shoot development. Additionally, it was found that the de novo shoot meristems induced in explants in which ethylene biosynthesis and perception was suppressed were unable to further develop into elongated shoots. Overall, these results imply that altering ethylene levels and perception could enhance shoot regeneration efficiency in tamarillo. Moreover, we offer insights into the possible molecular mechanisms involved in ethylene-induced shoot regeneration.

8.
Plant Physiol Biochem ; 194: 449-460, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36502609

RESUMO

Each day it is becoming increasingly difficult not to notice the completely new, fast growing, extremely intricate and challenging world of epitranscriptomics as the understanding of RNA methylation is expanding at a hasty rate. Writers (methyltransferases), erasers (demethylases) and readers (RNA-binding proteins) are responsible for adding, removing and recognising methyl groups on RNA, respectively. Several methyltransferases identified in plants are now being investigated and recent studies have shown a connection between RNA-methyltransferases (RNA-MTases) and stress and development processes. However, compared to their animal and bacteria counterparts, the understanding of RNA methyltransferases is still incipient, particularly those located in organelles. Comparative and systematic analyses allowed the tracing of the evolution of these enzymes suggesting the existence of several methyltransferases yet to be characterised. This review outlines the functions of plant nuclear and organellar RNA-MTases in plant development and stress responses and the comparative and evolutionary discoveries made on RNA-MTases across kingdoms.


Assuntos
Metiltransferases , RNA , Animais , Metiltransferases/genética , Metiltransferases/metabolismo , RNA/metabolismo , Metilação , Plantas/genética , Plantas/metabolismo , Bactérias/metabolismo
9.
Plants (Basel) ; 12(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37571022

RESUMO

Tamarillo is a solanaceous tree that has been extensively studied in terms of in vitro clonal propagation, namely somatic embryogenesis. In this work, a protocol of indirect somatic embryogenesis was applied to obtain embryogenic and non-embryogenic callus from leaf segments. Nuclear magnetic resonance spectroscopy was used to analyze the primary metabolome of these distinct calli to elucidate possible differentiation mechanisms from the common genetic background callus. Standard multivariate analysis methods were then applied, and were complemented by univariate statistical methods to identify differentially expressed primary metabolites and related metabolic pathways. The results showed carbohydrate and lipid metabolism to be the most relevant in all the calli assayed, with most discriminant metabolites being fructose, glucose and to a lesser extent choline. The glycolytic rate was higher in embryogenic calli, which shows, overall, a higher rate of sugar catabolism and a different profile of phospholipids with a choline/ethanolamine analysis. In general, our results show that a distinct primary metabolome between embryogenic and non-embryogenic calli occurs and that intracellular levels of fructose and sucrose and the glucose to sucrose ratio seem to be good candidates as biochemical biomarkers of embryogenic competence.

10.
Plants (Basel) ; 12(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36616319

RESUMO

Plant cell suspension cultures are widely used as a tool for analyzing cellular and molecular processes, metabolite synthesis, and differentiation, bypassing the structural complexity of plants. Within the range of approaches used to increase the production of metabolites by plant cells, one of the most recurrent is applying elicitors capable of stimulating metabolic pathways related to defense mechanisms. Previous proteomics analysis of tamarillo cell lines and cell suspension cultures have been used to further characterize and optimize the growth and stress-related metabolite production under in vitro controlled conditions. The main objective of this work was to develop a novel plant-based bioreactor system to produce hydrolytic enzymes using an elicitation approach. Based on effective protocols for tamarillo micropropagation and plant cell suspension culture establishment from induced callus lines, cell growth has been optimized, and enzymatic activity profiles under in vitro controlled conditions characterized. By testing different sucrose concentrations and the effects of two types of biotic elicitors, it was found that 3% (w/v) sucrose concentration in the liquid medium enhanced the production of hydrolytic enzymes. Moreover, casein hydrolysate at 0.5 and 1.5 g/L promoted protein production, whereas yeast extract (0.5 g/L) enhanced glycosidase activity. Meanwhile, chitosan (0.05 and 0.1 g/L) enhanced glycosidases, alkaline phosphates, and protease activities.

11.
Plants (Basel) ; 12(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36904062

RESUMO

Somatic embryogenesis in Solanum betaceum (tamarillo) has proven to be an effective model system for studying morphogenesis, since optimized plant regeneration protocols are available, and embryogenic competent cell lines can be induced from different explants. Nevertheless, an efficient genetic transformation system for embryogenic callus (EC) has not yet been implemented for this species. Here, an optimized faster protocol of genetic transformation using Agrobacterium tumefaciens is described for EC. The sensitivity of EC to three antibiotics was determined, and kanamycin proved to be the best selective agent for tamarillo callus. Two Agrobacterium strains, EHA105 and LBA4404, both harboring the p35SGUSINT plasmid, carrying the reporter gene for ß-glucuronidase (gus) and the marker gene neomycin phosphotransferase (nptII), were used to test the efficiency of the process. To increase the success of the genetic transformation, a cold-shock treatment, coconut water, polyvinylpyrrolidone and an appropriate selection schedule based on antibiotic resistance were employed. The genetic transformation was evaluated by GUS assay and PCR-based techniques, and a 100% efficiency rate was confirmed in the kanamycin-resistant EC clumps. Genetic transformation with the EHA105 strain resulted in higher values for gus insertion in the genome. The protocol presented provides a useful tool for functional gene analysis and biotechnology approaches.

12.
Methods Protoc ; 6(2)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36961051

RESUMO

Long-read sequencing methods allow a comprehensive analysis of transcriptomes in identifying full-length transcripts. This revolutionary method represents a considerable breakthrough for non-model species since it allows enhanced gene annotation and gene expression studies when compared to former sequencing methods. However, woody plant tissues are challenging to the successful preparation of cDNA libraries, thus, impairing further cutting-edge sequencing analyses. Here, a detailed protocol for preparing cDNA libraries suitable for high throughput RNA sequencing using Oxford Nanopore Technologies® is described. This method was used to prepare eight barcoded cDNA libraries from two Solanum betaceum cell lines: one with compact morphology and embryogenic competency (EC) and another with friable and non-embryogenic (NEC). The libraries were successfully sequenced, and data quality assessment showed high mean quality scores. Using this method, long-read sequencing will allow a comprehensive analysis of plant transcriptomes.

13.
Plants (Basel) ; 12(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176943

RESUMO

Tamarillo (Solanum betaceum Cav.) is a subtropical solanaceous tree with increasing agronomic interest due to its nutritious edible fruits. Growing demand for tamarillo plants and fruits requires optimization of existing propagation methods and scaled-up systems for large-scale cloning of selected germplasm. Three in vitro protocols have been used to micropropagate tamarillo: (1) axillary shoot proliferation in a semisolid medium, (2) organogenesis, and (3) somatic embryogenesis procedures. Variables such as the age of the established shoot cultures and rooting treatments were also analyzed. The morphological and physiological quality of acclimatized plants derived from all the methodologies were compared, with seed-derived plants used as a control group. Overall, the results show that in vitro-derived plants have a similar development to seed-derived plants. Micropropagation by axillary shoot proliferation was highly efficient, with rooting rates above 80% in most treatments. Organogenesis induction was more effective from lamina explants using MS media with 2.0 mg·L-1 6-benzylaminopurine. Both organogenesis and somatic embryogenesis-derived plants were also morphologically and physiologically equivalent to seed and axillary shoot-derived plants. The specificities of each micropropagation method are discussed.

14.
Antioxidants (Basel) ; 12(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36830094

RESUMO

Native to South America, tamarillo (Solanum betaceum Cav.) is a small tree cultivated as a fruit crop in several regions of the world. Known for its sweet and sour taste, tamarillo fruits are very nutritious due to the presence of health-beneficial components such as fiber, vitamins, and antioxidants. Despite its nutritional value, tamarillo remains poorly known in global markets. The present work aims to study the antioxidant activity of four genotypes of tamarillo. Several chemical assays were performed to assess the antioxidant components and antioxidant activity of aqueous ethanolic extracts from each genotype. Overall, the Mealhada genotype (a red cultivar) showed the most interesting results, displaying the highest amount of total phenolic, flavonoids, and anthocyanin contents, as well as higher antioxidant activity. To evaluate the composition of the extract, Fourier-transform infrared spectroscopy (FTIR) was used to characterize important components in aqueous ethanolic extracts of the fruits, having revealed the presence of high amounts of phenols (the main compounds responsible for antioxidant activity), as well as triterpenoids and polysaccharides. The present results highlight the potential nutraceutical importance of tamarillo fruits.

15.
Nanoscale Adv ; 5(13): 3428-3438, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37383075

RESUMO

The energy efficiency of buildings can be significantly improved through the use of renewable energy sources. Luminescent solar concentrators (LSCs) appear to be a solution for integrating photovoltaic (PV) devices into the structure of buildings (windows, for instance) to enable low-voltage devices to be powered. Here, we present transparent planar and cylindrical LSCs based on carbon dots in an aqueous solution and dispersed in organic-inorganic hybrid matrices, which present photoluminescent quantum yield values up to 82%, facilitating an effective solar photon conversion. These LSCs showed the potencial for being incorporated as building windows due to an average light transmittance of up to ∼91% and color rendering index of up to 97, with optical and power conversion efficiency values of 5.4 ± 0.1% and 0.18 ± 0.01%, respectively. In addition, the fabricated devices showed temperature sensing ability enabling the fabrication of an autonomous power mobile temperature sensor. Two independent thermometric parameters were established based on the emission and the electrical power generated by the LSC-PV system, which could both be accessed by a mobile phone, enabling mobile optical sensing through multiparametric thermal reading with relative sensitivity values up to 1.0% °C-1, making real-time mobile temperature sensing accessible to all users.

16.
EFSA J ; 21(7): e08092, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37434788

RESUMO

The qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of microorganisms, intended for use in the food or feed chains, to support the work of EFSA's Scientific Panels. The QPS approach is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of relevant knowledge and safety concerns. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'. In the period covered by this Statement, no new information was found that would change the status of previously recommended QPS TUs. Of 38 microorganisms notified to EFSA between October 2022 and March 2023 (inclusive) (28 as feed additives, 5 as food enzymes, food additives and flavourings, 5 as novel foods), 34 were not evaluated because: 8 were filamentous fungi, 4 were Enterococcus faecium and 2 were Escherichia coli (taxonomic units that are excluded from the QPS evaluation) and 20 were taxonomic units (TUs) that already have a QPS status. Three of the other four TUs notified within this period were evaluated for the first time for a possible QPS status: Anaerobutyricum soehngenii, Stutzerimonas stutzeri (former Pseudomonas stutzeri) and Nannochloropsis oculata. Microorganism strain DSM 11798 has also been notified in 2015 and as its taxonomic unit is notified as a strain not a species, it is not suitable for the QPS approach. A. soehngenii and N. oculata are not recommended for the QPS status due to a limited body of knowledge of its use in the food and feed chains. S. stutzeri is not recommended for inclusion in the QPS list based on safety concerns and limited information about the exposure of animals and humans through the food and feed chains.

17.
EFSA J ; 21(1): e07746, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36704192

RESUMO

The qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of microorganisms, intended for use in the food or feed chains, to support the work of EFSA's Scientific Panels. The QPS approach is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of relevant knowledge and safety concerns. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'. In the period covered by this Statement, new information was found leading to the withdrawal of the qualification 'absence of aminoglycoside production ability' for Bacillus velezensis. The qualification for Bacillus paralicheniformis was changed to 'absence of bacitracin production ability'. For the other TUs, no new information was found that would change the status of previously recommended QPS TUs. Of 52 microorganisms notified to EFSA between April and September 2022 (inclusive), 48 were not evaluated because: 7 were filamentous fungi, 3 were Enterococcus faecium, 2 were Escherichia coli, 1 was Streptomyces spp., and 35 were taxonomic units (TUs) that already have a QPS status. The other four TUs notified within this period, and one notified previously as a different species, which was recently reclassified, were evaluated for the first time for a possible QPS status: Xanthobacter spp. could not be assessed because it was not identified to the species level; Geobacillus thermodenitrificans is recommended for QPS status with the qualification 'absence of toxigenic activity'. Streptoccus oralis is not recommended for QPS status. Ogataea polymorpha is proposed for QPS status with the qualification 'for production purposes only'. Lactiplantibacillus argentoratensis (new species) is included in the QPS list.

18.
EFSA J ; 21(10): e08323, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37915981

RESUMO

The qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of microorganisms intended for use in the food or feed chains. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications' which should be assessed at strain and/or product level by EFSA's Scientific Panels. The generic qualification 'the strains should not harbour any acquired antimicrobial resistance (AMR) genes to clinically relevant antimicrobials' applies to all QPS bacterial TUs. The different EFSA risk assessment areas use the same approach to assess the qualification related to AMR genes. In this statement, the terms 'intrinsic' and 'acquired' AMR genes were defined for the purpose of EFSA's risk assessments, and they apply to bacteria used in the food and feed chains. A bioinformatic approach is proposed for demonstrating the 'intrinsic'/'acquired' nature of an AMR gene. All AMR genes that confer resistance towards 'critically important', 'highly important' and 'important' antimicrobials, as defined by the World Health Organisation (WHO), found as hits, need to be considered as hazards (for humans, animals and environment) and need further assessment. Genes identified as responsible for 'intrinsic' resistance could be considered as being of no concern in the frame of the EFSA risk assessment. 'Acquired' AMR genes resulting in a resistant phenotype should be considered as a concern. If the presence of the 'acquired' AMR gene is not leading to phenotypic resistance, further case-by-case assessment is necessary.

19.
J Proteome Res ; 11(3): 1666-75, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22309186

RESUMO

Cyphomandra betacea (tamarillo) is a tree that produces edible, highly nutritional fruits. In tamarillo, somatic embryogenesis (SE) is achieved through a two-step process starting with the formation of an embryogenic tissue on an auxin-rich medium and further development of embryos, following tissue transfer to an auxin-free medium. During the induction stage, both embryogenic (EC) and nonembryogenic calli (NEC) arise from the same explant (immature leaves or mature zygotic embryos) in the presence of either picloram or 2,4-dichlorophenoxyacetic acid. In an attempt to find somatic embryogenic-specific proteins, a comparative analysis of the proteome of tamarillo's EC and NEC was performed. Analysis of 2-DE gels revealed ca. 150 differentially expressed proteins, from which 22 have been identified by LC-MS/MS. Proteins exclusively or predominantly expressed in EC included metabolism-related proteins, such as enolases or treonine synthases, and also heat-shock and ribosomal proteins. Pathogenesis-related proteins were found mainly in NEC. A number of additional differentially expressed proteins involved in various functional categories were also identified. A quantitative real time PCR (qPCR) analysis revealed no significant differences at the mRNA level for 11 differentially expressed proteins, with exception of the pathogenesis-related proteins that were up-regulated in NEC. This seems to indicate that a posttranscriptional control might be responsible for the proteomic differences detected.


Assuntos
Ácidos Indolacéticos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Técnicas de Embriogênese Somática de Plantas/métodos , Proteoma/metabolismo , Solanum/metabolismo , Eletroforese em Gel Bidimensional , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Mapeamento de Peptídeos , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Mapas de Interação de Proteínas , Proteoma/genética , Proteoma/isolamento & purificação , Proteômica , Solanum/efeitos dos fármacos , Transcrição Gênica
20.
Sensors (Basel) ; 12(7): 8847-60, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23012521

RESUMO

In this work we proposed a relative humidity (RH) sensor based on a Bragg grating written in an optical fiber, associated with a coating of organo-silica hybrid material prepared by the sol-gel method. The organo-silica-based coating has a strong adhesion to the optical fiber and its expansion is reversibly affected by the change in the RH values (15.0-95.0%) of the surrounding environment, allowing an increased sensitivity (22.2 pm/%RH) and durability due to the presence of a siliceous-based inorganic component. The developed sensor was tested in a real structure health monitoring essay, in which the RH inside two concrete blocks with different porosity values was measured over 1 year. The results demonstrated the potential of the proposed optical sensor in the monitoring of civil engineering structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA