Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Int J Mol Sci ; 23(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35457088

RESUMO

Our groups previously reported that conjugation at 3'-end with ursodeoxycholic acid (UDCA) significantly enhanced in vitro exon skipping properties of ASO 51 oligonucleotide targeting the human DMD exon 51. In this study, we designed a series of lipophilic conjugates of ASO 51, to explore the influence of the lipophilic moiety on exon skipping efficiency. To this end, three bile acids and two fatty acids have been derivatized and/or modified and conjugated to ASO 51 by automatized solid phase synthesis. We measured the melting temperature (Tm) of lipophilic conjugates to evaluate their ability to form a stable duplex with the target RNA. The exon skipping efficiency has been evaluated in myogenic cell lines first in presence of a transfection agent, then in gymnotic conditions on a selection of conjugated ASO 51. In the case of 5'-UDC-ASO 51, we also evaluated the influence of PS content on exon skipping efficiency; we found that it performed better exon skipping with full PS linkages. The more efficient compounds in terms of exon skipping were found to be 5'-UDC- and 5',3'-bis-UDC-ASO 51.


Assuntos
Distrofia Muscular de Duchenne , Linhagem Celular , Distrofina/genética , Éxons/genética , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Oligonucleotídeos/genética , Oligonucleotídeos Antissenso/genética
2.
Molecules ; 27(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35630601

RESUMO

The development of multimodal imaging techniques such as positron emission tomography (PET) and magnetic resonance imaging (MRI) allows the contemporary obtaining of metabolic and morphological information. To fully exploit the complementarity of the two imaging modalities, the design of probes displaying radioactive and magnetic properties at the same time could be very beneficial. In this regard, transition metals offer appealing options, with manganese representing an ideal candidate. As nanosized imaging probes have demonstrated great value for designing advanced diagnostic/theranostic procedures, this work focuses on the potential of liposomal formulations loaded with a new synthesized paramagnetic Mn(II) chelates. Negatively charged liposomes were produced by thin-layer hydration method and extrusion. The obtained formulations were characterized in terms of size, surface charge, efficiency of encapsulation, stability over time, relaxivity, effective magnetic moment, and in vitro antiproliferative effect on human cells by means of the MTT assay. The negatively charged paramagnetic liposomes were monodisperse, with an average hydrodynamic diameter not exceeding 200 nm, and they displayed good stability and no cytotoxicity. As determined by optical emission spectroscopy, manganese complexes are loaded almost completely on liposomes maintaining their paramagnetic properties.


Assuntos
Lipossomos , Manganês , Humanos , Íons , Lipossomos/química , Imageamento por Ressonância Magnética/métodos , Nanotecnologia , Tomografia por Emissão de Pósitrons
3.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361084

RESUMO

Skin may be affected by many disorders that can be treated by topical applications of drugs on the action site. With the advent of nanotechnologies, new efficient delivery systems have been developed. Particularly, lipid-based nanosystems such as liposomes, ethosomes, transferosomes, solid lipid nanoparticles, nanostructured lipid carriers, cubosomes, and monoolein aqueous dispersions have been proposed for cutaneous application, reaching in some cases the market or clinical trials. This review aims to provide an overview of the different lipid-based nanosystems, focusing on their use for topical application. Particularly, biocompatible nanosystems able to dissolve lipophilic compounds and to control the release of carried drug, possibly reducing side effects, are described. Notably, the rationale to topically administer antioxidant molecules by lipid nanocarriers is described. Indeed, the structural similarity between the nanosystem lipid matrix and the skin lipids allows the achievement of a transdermal effect. Surely, more research is required to better understand the mechanism of interaction between lipid-based nanosystems and skin. However, this attempt to summarize and highlight the possibilities offered by lipid-based nanosystems could help the scientific community to take advantage of the benefits derived from this kind of nanosystem.


Assuntos
Permeabilidade da Membrana Celular , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Lipídeos/química , Nanopartículas/administração & dosagem , Pele/metabolismo , Animais , Humanos , Nanopartículas/química
4.
Molecules ; 26(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34443296

RESUMO

In recent decades liposomes have been used in different field thanks to their ability to act as a vehicle for a wide range of biomolecules, their great versatility and their easy production. The aim of this study was to evaluate liposomes as a vehicle for the actives present in the HelixComplex (HC) snail mucus for topical delivery. Liposomes composed of a mixture of phosphatidylcholine, cholesterol and octadecylamine were prepared with and without HC (empty liposomes) and their biological efficacy was tested by evaluating cell viability and migration. HC-loaded liposomes (LHC) were stable throughout 60 days of observation, and showed interesting effects on wound healing reconstitution. In particular, we observed that 25 µg/mL LHC were already able to induce a higher cell monolayer reconstitution in comparison to the untreated samples and HC treated samples after only 4 h (28% versus 10% and 7%, p = 0.03 and p= 0.003, respectively). The effect was more evident at 24 h in comparison with the untreated control (54% versus 21.2% and 41.6%, p = 0.006 and p = NS, respectively). These results represent a preliminary, but promising, novelty in the delivery strategy of the actives present in the HelixComplex mucus.


Assuntos
Muco/química , Caramujos/química , Animais , Morte Celular , Linhagem Celular , Fibroblastos/citologia , Técnica de Fratura por Congelamento , Humanos , Lipídeos/análise , Lipossomos/ultraestrutura , Espectrofotometria Infravermelho , Cicatrização/efeitos dos fármacos
5.
Molecules ; 25(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266241

RESUMO

Biofilm production is regulated by the Quorum Sensing system. Nowadays, Quorum Sensing represents an appealing target to design new compounds to increase antibiotics effects and avoid development of antibiotics multiresistance. In this research the use of liposomes to target two novel synthetic biofilm inhibitors is presented, focusing on a preformulation study to select a liposome composition for in vitro test. Five different liposome (LP) formulations, composed of phosphatidyl choline, cholesterol and charged surfactant (2:1:1, molar ratio) have been prepared by direct hydration and extrusion. As charged surfactants dicetyl phosphate didecyldimethylammonium chloride, di isobutyl phenoxy ethyl dimethyl benzyl ammonium chloride and stearylamine (SA) and have been used. Liposome charge, size and morphology were investigated by zeta potential, photon correlation spectroscopy, small angle x-ray spectroscopy and electron microscopy. LP-SA was selected for the loading of biofilm inhibitors and subjected to high performance liquid chromatography for entrapment capacity evaluation. LP-SA loaded inhibitors showed a higher diameter (223.6 nm) as compared to unloaded ones (205.7 nm) and a dose-dependent anti-biofilm effect mainly after 48 h of treatment, while free biofilm inhibitors loose activity. In conclusion, our data supported the use of liposomes as a strategy to enhance biofilm inhibitors effect.


Assuntos
Antibacterianos/administração & dosagem , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Lipossomos/administração & dosagem , Nanopartículas/administração & dosagem , Percepção de Quorum , Antibacterianos/química , Lipossomos/química , Nanopartículas/química
6.
Molecules ; 25(6)2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32210106

RESUMO

Ellagic acid (EA) is a potent antioxidant substance of natural origin characterized by poor biopharmaceutical properties and low solubility in water that limit its use. The aim of the present study was to develop lipid-based nanoparticle formulations able to encapsulate EA for dermal delivery. The EA-loaded nanoparticles were prepared using two different lipid compositions, namely tristearin/tricaprylin (NLC-EA1) and tristearin/labrasol (NLC-EA2). The influence of formulations on size, entrapment efficiency, and stability of EA-loaded nanoparticles was investigated. Cryo-TEM and small-angle X-ray scattering (SAXS) analyses showed that no morphological differences are evident among all the types of loaded and unloaded nanostructured lipid carriers (NLCs). The macroscopic aspect of both NLC-EA1 and NLC-EA2 did not change with time. No difference in size was appreciable between empty and drug-containing NLC, thus the nanoparticle diameter was not affected by the presence of EA and in general no variations of the diameters occurred during this time. The entrapment efficiency of both EA-loaded nanoparticles was almost quantitative. In addition, NLC-EA1 maintained EA stability for almost two months, while NLC-EA2 up to 40 days. FRAP (Ferric reducing ability of plasma) assay showed an antioxidant activity around 60% for both the loaded NLC, as compared to the solution. Although both types of NLC are characterized by some toxicity on HaCaT cells, NLC-EA1 are less cytotoxic than NLC-EA2. Taken together these results demonstrated that the inclusion of EA within NLC could improve the water solubility, allowing for a reduction of the dosage. Moreover, both types of NLC-EA maintained a high antioxidant effect and low toxicity.


Assuntos
Antioxidantes , Portadores de Fármacos , Ácido Elágico , Nanopartículas/química , Antioxidantes/química , Antioxidantes/farmacocinética , Antioxidantes/farmacologia , Caprilatos/química , Caprilatos/farmacocinética , Caprilatos/farmacologia , Linhagem Celular , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Ácido Elágico/química , Ácido Elágico/farmacocinética , Ácido Elágico/farmacologia , Glicerídeos/química , Glicerídeos/farmacocinética , Glicerídeos/farmacologia , Humanos , Triglicerídeos/química , Triglicerídeos/farmacocinética , Triglicerídeos/farmacologia
7.
AAPS PharmSciTech ; 19(7): 3258-3271, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30209790

RESUMO

Intra-periodontal pocket drug delivery systems, such as liquid crystalline systems, are widely utilized improving the drug release control and the therapy. Propolis is used in the treatment of periodontal diseases, reducing the inflammatory and infectious conditions. Iron oxide magnetic nanoparticles (MNPs) can improve the treatment when an alternating external magnetic field (AEMF) is applied, increasing the local temperature. The aim of this study was to develop a liquid crystalline system containing MNPs for intra-periodontal pocket propolis release. MNPs were prepared using iron salts and the morphological, size, thermal, x-ray diffraction, magnetometry, and Mössbauer spectroscopy analyses were performed. Cytotoxicity studies using Artemia salina and fibroblasts were also accomplished. The systems were prepared using polyoxyethylene (10) oleyl ether, isopropyl myristate, purified water, and characterized by polarized optical microscopy, rheometry, and in vitro drug release profile using a periodontal pocket simulator apparatus. The antifungal activity of the systems was investigated against Candida spp. using an AEMF. MNPs displayed nanometric size, were monodisperse, and they displayed very low cytotoxicity. Microscopically homogeneous formulations were obtained displaying important physicochemical and biological properties. The system displayed prolonged release of propolis and important in vitro fungicide activity, which was increased when the AEMF was applied, indicating a potentially alternative therapy for the treatment of the periodontal disease.


Assuntos
Liberação Controlada de Fármacos , Cristais Líquidos/química , Campos Magnéticos , Nanopartículas de Magnetita/química , Própole/metabolismo , Animais , Antifúngicos/química , Antifúngicos/farmacocinética , Artemia , Sistemas de Liberação de Medicamentos/métodos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Temperatura , Difração de Raios X
8.
Biomed Microdevices ; 19(2): 41, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28484916

RESUMO

This study describes the preparation, characterization and in vitro release of monoolein aqueous dispersions (MAD) encapsulating quercetin (QT). As emulsifier, sodium cholate was employed at two different concentrations, namely 0.15% and 0.25% with respect to the total weight of the formulation. Cryogenic Transmission electron microscopy and X-ray analysis indicated that MAD015 are a mixture of vesicles and cubic structures, whilst MAD025 are mainly characterized by unilamellar vesicular structures. Photon correlation spectroscopy (PCS) and Sedimentation Field Flow Fractionation (SdFFF) showed a MAD size higher than 300 nm that over 100 days from analysis reduces up to 200 nm. In vitro Franz cell experiments showed that the two systems had a similar behaviour in the release of QT. Experiments on antioxidant activity of MAD containing QT demonstrated that their activity parallel with the content of encapsulated QT within the MAD formulations produced. Taken together these results allow us to conclude that MAD can be potentially proposed for the delivery of QT.


Assuntos
Antioxidantes/química , Portadores de Fármacos/química , Glicerídeos/química , Quercetina/química , Água/química , Antioxidantes/toxicidade , Linhagem Celular , Humanos , Cinética , Quercetina/toxicidade
9.
Biomed Microdevices ; 19(3): 44, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28526975

RESUMO

This study describes the potential of solid lipid nanoparticles and nanostructured lipid carriers as nano-formulations to administer to the central nervous system poorly water soluble drugs. Different neuroactive drugs, i.e. dimethylfumarate, retinyl palmitate, progesterone and the endocannabinoid hydrolysis inhibitor URB597 have been studied. Lipid nanoparticles constituted of tristearin or tristearin in association with gliceryl monoolein were produced. The nanoencapsulation strategy allowed to obtain biocompatible and non-toxic vehicles, able to increase the solubility of the considered neuroactive drugs. To improve URB597 targeting to the brain, stealth nanoparticles were produced modifying the SLN surface with polysorbate 80. A behavioural study was conducted in rats to test the ability of SLN containing URB597 given by intranasal administration to alter behaviours relevant to psychiatric disorders. URB597 maintained its activity after nanoencapsulation, suggesting the possibility to propose this kind of vehicle as alternative to unphysiological mixtures usually employed for animal and clinical studies.


Assuntos
Benzamidas/química , Carbamatos/química , Portadores de Fármacos/química , Lipídeos/química , Nanopartículas/química , Água/química , Animais , Benzamidas/metabolismo , Encéfalo/metabolismo , Carbamatos/metabolismo , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Glicerídeos/química , Cinética , Masculino , Tamanho da Partícula , Polissorbatos/química , Ratos , Ratos Wistar , Solubilidade , Distribuição Tecidual , Triglicerídeos/química
10.
J Microencapsul ; 34(1): 63-72, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28097914

RESUMO

This study describes the preparation, characterisation and in vitro activity of nanostructured lipid carriers (NLCs) encapsulating natural molecules with antimicrobial activity, such as plumbagin, hydroquinon, eugenol, alpha-asarone and alpha-tocopherol. NLCs were prepared by melt and ultrasonication method, characterised by Cryo-TEM for morphology and SdFFF for dimensional distribution and active encapsulation yields. In vitro tests were conducted on bacteria, fungi and human cell cultures. In vitro tests demonstrated that plumbagin is strongly toxic towards F. oxysporum especially when active molecules are loaded on NLC. Plumbagin was completely non toxic on cyanobacterial model strain up to a threshold over which cell viability was completely lost. NLC loaded with active molecules showed a lower toxicity as compared to their free form on human cultured cells. Although further studies need to be performed, these systems can be potentially proposed to control phytopathogenic organisms.


Assuntos
Anti-Infecciosos/administração & dosagem , Portadores de Fármacos/química , Lipídeos/química , Nanoestruturas/química , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Linhagem Celular , Cianobactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Humanos , Micoses/tratamento farmacológico , Nanoestruturas/ultraestrutura
11.
Biomed Microdevices ; 18(6): 108, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27830454

RESUMO

The present study describes the production and characterization of phosphatidylcholine based ethosomes and organogels, as percutaneous delivery systems for crocin. Crocin presence did not influence ethosome morphology, while the drug slightly increased ethosome mean diameter. Importantly, the poor chemical stability of crocin has been found to be long controlled by organogel. To investigate the performance of phosphatidylcholine lipid formulations as crocin delivery system, in vivo studies, based on tape stripping and skin reflectance spectrophotometry, were performed. Tape stripping results suggested a rapid initial penetration of crocin exerted by the organogel, probably due to a strong interaction between the peculiar supramolecular aggregation structure of phospholipids in the vehicle and the lipids present in the stratum corneum and a higher maintenance of crocin concentration in the case of ethosomes, possibly because of the formation of a crocin depot in the stratum corneum. Skin reflectance spectrophotometry data indicated that both vehicles promoted the penetration of crocin through the skin, with a more rapid anti-inflammatory effect exploited by ethosomes, attributed to an ethanol pronounced penetration enhancer effect and to the carrier system as a whole.


Assuntos
Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Carotenoides/administração & dosagem , Carotenoides/química , Portadores de Fármacos/química , Fosfatidilcolinas/química , Administração Cutânea , Adulto , Anti-Inflamatórios/farmacologia , Carotenoides/farmacologia , Estabilidade de Medicamentos , Feminino , Géis , Humanos , Masculino , Pessoa de Meia-Idade , Nanoestruturas/química , Reologia
12.
Exp Dermatol ; 24(6): 449-54, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25808217

RESUMO

This study describes the production and characterization of nanostructured lipid dispersions (NLDs) containing curcumin (CUR) as new tools for curcumin topical delivery. Four types of NLDs based on monoolein in association with different emulsifiers were produced: Na cholate and poloxamer 407 (NLD1), poloxamer alone (NLD2), the mixture of Na cholate and Na caseinate (NLD3) and Na cholate alone (NLD4). Morphology and dimensional distribution of lipid dispersions were investigated by cryo-TEM and photon correlation spectroscopy (PCS). In vitro studies based on Franz cell, membrane nylon and stratum corneum-epidermis (SCE) were carried out to compare the four NLDs in terms of cytotoxicity in human keratinocytes and CUR diffusion. Our PCS studies showed differences in particles diameter among the different NLDs. In addition, cytotoxicity results in HaCaT cells evidenced that NLD1 and NLD2 were toxic at doses over 1 µm. Therefore, cryo-TEM was determined only for NLD3 and NLD4 showing that CUR did not affect their structure. Diffusion measurement in SCE and nylon membrane evidenced that CUR had a time-delayed release for NLD4. The 'wound healing' effect of NLD3 and NLD4 with and without CUR analysed keratinocytes in vitro, and a clear inhibition of cell proliferation/migration by CUR was observed. This effect was mediated by the inhibition of cyclin D1 expression as a consequence of the impaired NFkB activation. This study confirms the antiproliferative properties of CUR and evidenced a new possible model of CUR topical delivery for hyperproliferative cutaneous diseases such as psoriasis.


Assuntos
Proliferação de Células/efeitos dos fármacos , Curcumina/farmacologia , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Lipídeos , Nanoestruturas , Caseínas/farmacologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Microscopia Crioeletrônica , Curcumina/análise , Emulsificantes/química , Emulsificantes/farmacologia , Humanos , Técnicas In Vitro , Queratinócitos/ultraestrutura , Poloxâmero/farmacologia , Colato de Sódio/farmacologia
13.
Gels ; 9(11)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37998977

RESUMO

The use of lipid-based nanosystems for topical administration represents an innovative "green" approach, being composed of materials, defined as GRAS (generally recognized as safe), characterized by low toxicity, biocompatibility, and biodegradability [...].

14.
Gels ; 9(2)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36826277

RESUMO

In the present study, gels based on xanthan gum and poloxamer 407 have been developed and characterized in order to convey natural antioxidant molecules included in niosomes. Specifically, the studies were conducted to evaluate how the vesicular systems affect the release of the active ingredient and which formulation is most suitable for cutaneous application. Niosomes, composed of Span 20 or Tween 20, were produced through the direct hydration method, and therefore, borate buffer or a micellar solution of poloxamer 188 was used as the aqueous phase. The niosomes were firstly characterized in terms of morphology, dimensional and encapsulation stability. Afterwards, gels based on poloxamer 407 or xanthan gum were compared in terms of spreadability and adhesiveness. It was found to have greater spreadability for gels based on poloxamer 407 and 100% adhesiveness for those based on xanthan gum. The in vitro diffusion of drugs studied using Franz cells associated with membranes of mixed cellulose esters showed that the use of a poloxamer micellar hydration phase determined a lower release as well as the use of Span 20. The thickened niosomes ensured controlled diffusion of the antioxidant molecules. Lastly, the in vivo irritation test confirmed the safeness of niosomal gels after cutaneous application.

15.
Pharmaceutics ; 15(7)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37514126

RESUMO

In this study, we examined and compared two different lipid-based nanosystems (LBNs), namely Transferosomes (TFs) and Monoolein Aqueous Dispersions (MADs), as delivery systems for the topical application of Ferulic Acid (FA), an antioxidant molecule derived from natural sources. Our results, as demonstrated through Franz-cell experiments, indicate that the LBNs produced with poloxamer 188 in their composition create a multilamellar system. This system effectively controls the release of the drug. Nonetheless, we found that the type of non-ionic surfactant can impact the drug release rate. Regarding FA diffusion from the MAD, this showed a lower diffusion rate compared with the TF. In terms of an in vivo application, patch tests revealed that all LBN formulations tested were safe when applied under occlusive conditions for 48 h. Additionally, human skin biopsies were used to determine whether FA-containing formulations could influence skin tissue morphology or provide protection against O3 exposure. Analyses suggest that treatment with TFs composed of poloxamer 188 and MAD formulations might protect against structural skin damage (as observed in hematoxylin/eosin staining) and the development of an oxidative environment (as indicated by 4-hyroxinonenal (4HNE) expression levels) induced by O3 exposure. In contrast, formulations without the active ingredient did not offer protection against the detrimental effects of O3 exposure.Inizio modulo.

16.
Antioxidants (Basel) ; 12(12)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38136145

RESUMO

In this study, bile acid-based vesicles and nanoparticles (i.e., bilosomes and biloparticles) are studied to improve the water solubility of lipophilic drugs. Ursodeoxycholic acid, sodium cholate, sodium taurocholate and budesonide were used as bile acids and model drugs, respectively. Bilosomes and biloparticles were prepared following standard protocols with minor changes, after a preformulation study. The obtained systems showed good encapsulation efficiency and dimensional stability. Particularly, for biloparticles, the increase in encapsulation efficiency followed the order ursodeoxycholic acid < sodium cholate < sodium taurocholate. The in vitro release of budesonide from both bilosytems was performed by means of dialysis using either a nylon membrane or a portion of Wistar rat small intestine and two receiving solutions (i.e., simulated gastric and intestinal fluids). Both in gastric and intestinal fluid, budesonide was released from bilosystems more slowly than the reference solution, while biloparticles showed a significant improvement in the passage of budesonide into aqueous solution. Immunofluorescence experiments indicated that ursodeoxycholic acid bilosomes containing budesonide are effective in reducing the inflammatory response induced by glucose oxidase stimuli and counteract ox-inflammatory damage within intestinal cells.

17.
Drug Deliv Transl Res ; 12(8): 1873-1880, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35084708

RESUMO

The present study describes a preliminary study on the use of monoolein aqueous dispersions (MADs) as delivery systems for antioxidant molecules, namely, ascorbyl palmitate (AP) and alpha-tocopherol (AT). MAD, produced by emulsifying monoolein (4.5% w/w) in water and poloxamer 407 (0.5% w/w) as emulsifier, was characterized in terms of size, morphology, and antioxidant activity by mean of PCS, cryo-TEM, and (2,2-diphenyl-1-picrylhydrazyl) assay. MAD-AP or MAD-AT gave rise to a bimodal size distribution with mean size around 200 nm. All the preparations stored at 25 °C showed quite stable size at least up to 90 days. Cryo-TEM images confirmed MAD size distribution and indicated different MAD morphologies as a function of the loaded antioxidant molecule. Indeed, in the case of MAD-AP, vesicles and cubosomes with the typical inner cubic structure were observed, while vesicles and hexosomes were shown for MAD-AT. The encapsulation efficiency of both antioxidants reached more than 90% with respect to the total amount of drug used for MAD preparation. Moreover, AP and AT antioxidant activity was retained after encapsulation, and in vitro Franz cell experiments showed that the MAD enabled to better control the drug release. These preliminary results suggest that MAD formulations could be further investigated as a potential delivery system for antioxidant supplementation in dietary or cosmetic fields.


Assuntos
Antioxidantes , Glicerídeos , Antioxidantes/química , Glicerídeos/química , Tamanho da Partícula , Poloxâmero/química , Água/química
18.
Pharmaceutics ; 14(5)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35631628

RESUMO

The present study is aimed to design ethosomes and transethosomes for topical administration of quercetin. To overcome quercetin low bioavailability, scarce solubility and poor permeability that hamper its pharmaceutical use, the drug was loaded in ethosomes and transethosomes based on different concentrations of phosphatidylcholine. Vesicle morphology was studied by cryogenic transmission electron microscopy, while size distribution and quercetin entrapment capacity were evaluated up to 3 months, respectively, by photon correlation spectroscopy and high-performance liquid chromatography. The antioxidant property was studied by photochemiluminescence test. Quercetin release and permeation was investigated in vitro, using Franz cells associated to different membranes. In vitro assays were conducted on human keratinocytes and melanoma cells to study the behavior of quercetin-loaded nano-vesicular forms with respect to cell migration and proliferation. The results evidenced that both phosphatidylcholine concentration and quercetin affected the vesicle size. Quercetin entrapment capacity, antioxidant activity and size stability were controlled using transethosomes produced by the highest amount of phosphatidylcholine. In vitro permeation studies revealed an enhancement of quercetin permeation in the case of transethosomes with respect to ethosomes. Notably, scratch wound and migration assays suggested the potential of quercetin loaded-transethosomes as adjuvant strategy for skin conditions.

19.
Pharmaceutics ; 14(1)2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35057004

RESUMO

This investigation aims to find lipid-based nanosystems to be used as tools to deliver manganese for diagnostic purposes in multimodal imaging techniques. In particular, the study describes the production and characterization of aqueous dispersions of anionic liposomes as delivery systems for two model manganese-based compounds, namely manganese chloride and manganese acetylacetonate. Negatively charged liposomes were obtained using four different anionic surfactants, namely sodium docusate (SD), N-lauroylsarcosine (NLS), Protelan AG8 (PAG) and sodium lauroyl lactylate (SLL). Liposomes were produced by the direct hydration method followed by extrusion and characterized in terms of size, polydispersity, surface charge and stability over time. After extrusion, liposomes are homogeneous and monodispersed with an average diameter not exceeding 200 nm and a negative surface charge as confirmed by ζ potential measurement. Moreover, as indicated by atomic absorption spectroscopy analyses, the loading of manganese-based compounds was almost quantitative. Liposomes containing NLS or SLL were the most stable over time and the presence of manganese-based compounds did not affect their size distribution. Liposomes containing PAG and SD were instable and therefore discarded. The in vitro cytotoxicity of the selected anionic liposomes was evaluated by MTT assay on human keratinocyte. The obtained results highlighted that the toxicity of the formulations is dose dependent.

20.
Eur J Histochem ; 66(1)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35130675

RESUMO

The investigation of the absorption of drug delivery systems, designed for the transport of therapeutic molecules inside the body, could be relatively simplified by the fluorophore association and tracking by means of bio-imaging techniques (i.e., optical in vivo imaging or confocal and multiphoton microscopy). However, when a fluorescence signal comes out from the skin, its specific detection can be problematic. Skin high autofluorescence can hinder the observation of administered exogenous fluorophores conjugated to drug delivery systems, making it more challenging to detect their biodistribution. In the present study, we have developed a method based on the spectrofluorometric analysis of skin samples to discriminate the fluorescent signal coming from administered fluorescent molecules from the background. Moreover, we gave a semi-quantitative evaluation of the signal intensity. Thus, we distinguished two gel formulations loading the fluorophore rhodamine B (called GEL RHO and GEL SLN-RHO). The two formulations of gels, one of which containing solid lipid nanoparticles (GEL RHO-SLN), were administered on skin explants incubated in a bioreactor, and the penetration was evaluated at different time points (2 and 6 hours). Cryostatic sections of skin samples were observed with confocal laser scanning microscopy, and a spectrofluorometric analysis was performed. Significantly higher signal intensity in the samples administered with SLN-RHO GEL, with a preferential accumulation in the hair bulbs, was found. Reaching also the deeper layers of the hair shaft after 6 hours, the solid lipid nanoparticles thickened with polymer represent a suitable drug delivery system for transcutaneous administration.


Assuntos
Nanopartículas , Portadores de Fármacos/metabolismo , Géis/metabolismo , Lipossomos/metabolismo , Tamanho da Partícula , Pele/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA