RESUMO
OBJECTIVES: Loss of foot sensitivity is a relevant parameter to assess and prevent in several diseases. It is crucial to determine the vibro-tactile sensitivity threshold response to acute conditions to explore innovative monitor tools and interventions to prevent and treat this challenge. The aims were: 1) to analyze the acute effects of a single whole body vibration session (4min-18Hz-4mm) on vibro-tactile perception threshold in healthy young adults. 2) to analyze the 48 hours effects of 3 whole body vibration sessions on vibro-tactile perception threshold in healthy young adults. METHODS: A randomized controlled clinical trial over 3 sessions of whole body vibration intervention or 3 sessions of placebo intervention. Twenty-eight healthy young adults were included: 11 experimental group and 12 placebo group. The experimental group performed 3 sessions of WBV while the placebo group performed 3 sessions of placebo intervention. RESULTS: The vibro-tactile threshold increased right after a single WBV session in comparison with placebo. Nevertheless, after 3 whole body vibration sessions and 48 hours, the threshold decreased to values lower than the initial. CONCLUSIONS: The acute response of the vibro-tactile threshold to one whole body vibration session increased, but the 48 hours short-term response of this threshold decreased in healthy young adults.
Assuntos
Percepção do Tato/fisiologia , Vibração , Adolescente , Adulto , Feminino , Humanos , Masculino , Projetos Piloto , Método Simples-Cego , Adulto JovemRESUMO
Two accurate and computationally efficient electron-propagator (EP) methods for calculating the valence, vertical ionization energies (VIEs) of closed-shell molecules have been identified through comparisons with related approximations. VIEs of a representative set of closed-shell molecules were calculated with EP methods using 10 basis sets. The most easily executed method, the diagonal, second-order (D2) EP approximation, produces results that steadily rise as basis sets are improved toward values based on extrapolated coupled-cluster singles and doubles plus perturbative triples calculations, but its mean errors remain unacceptably large. The outer valence Green function, partial third-order and renormalized partial third-order methods (P3+), which employ the diagonal self-energy approximation, produce markedly better results but have a greater tendency to overestimate VIEs with larger basis sets. The best combination of accuracy and efficiency with a diagonal self-energy matrix is the P3+ approximation, which exhibits the best trends with respect to basis-set saturation. Several renormalized methods with more flexible nondiagonal self-energies also have been examined: the two-particle, one-hole Tamm-Dancoff approximation (2ph-TDA), the third-order algebraic diagrammatic construction or ADC(3), the renormalized third-order (3+) method, and the nondiagonal second-order renormalized (NR2) approximation. Like D2, 2ph-TDA produces steady improvements with basis set augmentation, but its average errors are too large. Errors obtained with 3+ and ADC(3) are smaller on average than those of 2ph-TDA. These methods also have a greater tendency to overestimate VIEs with larger basis sets. The smallest average errors occur for the NR2 approximation; these errors decrease steadily with basis augmentations. As basis sets approach saturation, NR2 becomes the most accurate and efficient method with a nondiagonal self-energy.
RESUMO
Structures, isomerization energies, and electron binding energies of 5-azauracil and its anions have been calculated ab initio with perturbative, coupled-cluster, and electron-propagator methods. Tautomeric structures, including those produced by proton transfer to a CH group, have been considered. Dyson orbitals and pole strengths from electron-propagator calculations validated a simple, molecular-orbital picture of anion formation. In one case, an electron may enter a delocalized π orbital, yielding a valence-bound (VB) anion with a puckered ring structure. The corresponding electron affinity is 0.27 eV; the vertical electron detachment energy (VEDE) of this anion 1.05 eV. An electron also may enter a molecular orbital that lies outside the nuclear framework, resulting in a diffuse-bound (DB) anion. In the latter case, the electron affinity is 0.06 eV and the VEDE of the DB anion is 0.09 eV. Another VB isomer that is only 0.02 eV more stable than the neutral molecule has a VEDE of 2.0 eV.
Assuntos
Ânions/química , Modelos Moleculares , Uracila/análogos & derivados , Simulação por Computador , Elétrons , Isomerismo , Uracila/químicaRESUMO
Ab initio electron propagator methods are efficient and accurate means of calculating vertical electron detachment energies of closed-shell, molecular anions with nuclei from the first three periods. Basis set extrapolations enable definitive comparisons between electron propagator results and benchmarks defined by total energy differences obtained with coupled-cluster, single, double, plus perturbative triple substitution theory. The best compromises of accuracy and efficiency are provided by the renormalized, partial third-order, diagonal (P3+) self-energy and by the nondiagonal, renormalized, second-order (NR2) approximation. The outer-valence Green function, the two-particle-one-hole Tamm-Dancoff approximation, the third-order algebraic diagrammatic construction, and the renormalized third-order methods also are examined. A detailed analysis of errors for small anions is performed. Case studies include F-(H2O) and Cl-(H2O) complexes, C5H5-, two P2N3- pentagonal rings, and a superhalide, Al(BO2)4-, whose electron detachment energy is more than double those of the halide anions. These applications illustrate the versatility of electron propagator methods, their utility for interpreting negative-ion photoelectron spectra, and their promise in the discovery of unusual properties and patterns of chemical bonding. Composite methods, which combine basis set effects calculated at the relatively efficient diagonal, second-order level and higher correlation effects calculated with small basis sets, provide excellent estimates of basis set-extrapolated P3+ or NR2 results and facilitate applications to large molecules. In the P3+ and NR2 methods, a judicious choice of low-order couplings between hole operators that correspond to the assumptions of Koopmans's theorem and operators that describe final-state relaxation and polarization and initial-state correlation leads to predictive accuracy, computational efficiency, and interpretive lucidity.
RESUMO
The Children's Depression Rating Scale is a useful and reliable instrument for measuring the severity of depression in children. The scale was initially used in a pediatric liaison population. This study reports its use in consecutive admissions to a child inpatient unit. Systematic evaluations of the children resulted in many diagnoses of depression which were missed by the clinical staff. Two relatively inexperienced raters did nearly as well as two raters who originated the scale, suggesting that the CDRS may have practical utility in many settings.