Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(3): 3504-3519, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36785342

RESUMO

Nowadays, atom-based quantum sensors are leaving the laboratory towards field applications requiring compact and robust laser systems. Here we describe the realization of a compact laser system for atomic gravimetry. Starting with a single diode laser operating at 780 nm and adding only one fiber electro-optical modulator, one acousto-optical modulator and one laser amplifier we produce laser beams at all the frequencies required for a Rb-87 atomic gravimeter. Furthermore, we demonstrate that an atomic fountain configuration can also be implemented with our laser system. The modulated system reported here represents a substantial advance in the simplification of the laser source for transportable atom-based quantum sensors that can be adapted to other sensors such as atomic clocks, accelerometers, gyroscopes or magnetometers with minor modifications.

2.
Phys Rev Lett ; 109(4): 043602, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-23006087

RESUMO

We implement a noiseless optical amplifier using a phase-sensitive four-wave mixing process in rubidium vapor. We observe performance near the quantum limit for this type of amplifier over a range of experimental parameters and show that the noise figure is always better than would be obtained with a phase-insensitive amplifier with the same gain. Additionally, we observe that the amplifier supports hundreds of spatial modes, making it possible to amplify complex two-dimensional spatial patterns with less than a 10% degradation of the input signal-to-noise ratio for gains up to 4.6. To confirm the multimode character of the amplifier, we study the noise figure as a function of spatially-varying losses. Additionally, we investigate the spatial resolution of the amplifier and show that it supports a range of spatial frequencies from 1.3 to more than 35 line pairs per millimeter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA