Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 114(5): 1087-1095, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27861732

RESUMO

The blood brain barrier (BBB) represents a challenge in the development of new nano-delivery systems able to reach the central nervous system (CNS). In order to test the efficacy of these nanocarriers, it is fundamental to use in vitro models that resemble the in vivo cell culture conditions. Here, we demonstrate for the first time the ability of a membranotropic peptide, namely gH625, to transport a cargo-acting as a shuttle-across the BBB layer under flow conditions that mimic the blood flow rate. To this aim, a BBB microfluidic device was designed based on a transparent polyester porous membrane sandwiched between a top and a bottom overlying channel made of poly(methyl methacrylate) (PMMA). Our data clearly indicate that this microfluidic system allows the growth of brain endothelial bEnd.3 cells and the formation of a confluent layer at 7 days of culture that hinders the passage of nanoparticles compared to porous membrane alone. The device was validated at a 5 µL/min working flow rate, where the capability of the model to remain intact after nanoparticle passage was shown. Very interestingly, the decoration with the gH625 peptide enhances the adhesion of nanoparticles to the endothelial layer and the BBB crossing in flow conditions, thus confirming the efficacy of the gH625 as a delivery platform to the brain. Biotechnol. Bioeng. 2017;114: 1087-1095. © 2016 Wiley Periodicals, Inc.


Assuntos
Barreira Hematoencefálica/metabolismo , Modelos Biológicos , Nanopartículas/metabolismo , Peptídeos/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Desenho de Equipamento , Camundongos , Técnicas Analíticas Microfluídicas/instrumentação , Peptídeos/química
2.
Opt Lett ; 37(4): 635-7, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22344131

RESUMO

We propose here an application to sensing of annular aperture arrays (AAA). We theoretically investigate the optical properties of the reflective AAA device when illuminated in-plane. The cavity presents almost perfect absorption due to the waveguide mode resonance with strong field localization in the aperture. Additionally, the reflective cavity is modeled to be available for on-chip sensing with a theoretically expected sensitivity of 764 nm/RIU(refractive index unit).

3.
Sci Rep ; 5: 17876, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26658848

RESUMO

Micromixers are the key component that allow lab-on-a-chip and micro total analysis systems to reach the correct level of mixing for any given process. This paper proposes a novel, simple, passive micromixer design characterized by a planar accordion-shape geometry. The geometrical characteristics of the presented design were analyzed numerically in the range of 0.01 < Re < 100 based on the micromixer performance. The performance of the most efficient design was experimentally investigated by means of fluorescence microscopy for a range of low diffusion coefficients, 10(-12) < D < 10(-11) m(2)/s. The micromixer structure was fabricated in a simple single-step process using maskless lithography and soft lithography. The experimental results showed a very good agreement with the predicted numerical results. This micromixer design including a single serpentine unit (1-SERP) displayed an efficiency higher than 90% (mixing length = 6.4 mm) creating a pressure drop of about 500 Pa at Re = 0.1 and 60 kPa at Re = 10. A mixing efficiency of almost 100% was readily reached when three serpentine units were included (3-SERP). Finally, the potential diagnostic value of the presented microdevice was validated experimentally for Red Blood Cell (RBC) lysis.


Assuntos
Dispositivos Lab-On-A-Chip , Simulação por Computador , Desenho de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA