Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 49(12): 11611-11622, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36161578

RESUMO

BACKGROUND: Colletotrichum gloeosporioides ES026, isolated as an endophytic fungal strain, was found to produce the important medicinal compound HuperzineA (HupA). In a genetic context, ES026 showed potential in elucidating the biosynthetic pathway of HupA. METHODS AND RESULTS: The ES026 strain was sequenced using de-novo Illumina sequencing methods in this study. Assembling the cleaned data resulted in 58,594,804bp, consisting of 404 scaffolds. The G + C mol % content of this genome was 52.53%. The genome progressive-alignment with other 4 Colletotrichum strains revealed that ES026 showed closer relation with 030206, SMCG1#C and Nara gc5. More than 60 putative biosynthetic clusters were predicted with the fungal version antiSMASH4.0 program. More than 33 types I polyketide-related biosynthetic gene clusters were distributed, containing PKS and PKS-NRPS (polyketide-nonribosomal peptides) hybrid gene clusters. Another 8 NRPS biosynthetic gene clusters were distributed among the genome of ES026. The prenyltransferases, probably involved in aromatic prenyl-compounds and terpenoid biosynthesis, were analyzed using bioinformatics tools like MEGA. CONCLUSION: We predicted a new possible biosynthetic pathway for the HupA from the pipecolic acid, based on the published HupA biosynthesis proposed pathway, the biosynthesis and pipecolic acid-derived compounds. We hypothesize that a hybrid PKS-NRPS mega-enzyme was probably involved in the biosynthesis of HupA with the pipecolic acid, the building block of rapamycin, as a HupA precursor. The rapamycin is produced from a polyketide biosynthesis pathway, and the domain incorporating the pipecolic acid is studied.


Assuntos
Colletotrichum , Policetídeos , Colletotrichum/genética , Sequência de Bases , Família Multigênica , Policetídeos/metabolismo , Sirolimo
2.
Molecules ; 26(4)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567664

RESUMO

As the population ages globally, there seem to be more people with Alzheimer's disease. Unfortunately, there is currently no specific treatment for the disease. At present, Huperzine A (HupA) is one of the best drugs used for the treatment of Alzheimer's disease and has been used in clinical trials for several years in China. HupA was first separated from Huperzia serrata, a traditional medicinal herb that is used to cure fever, contusions, strains, hematuria, schizophrenia, and snakebite for several hundreds of years in China, and has been confirmed to have acetylcholinesterase inhibitory activity. With the very slow growth of H. serrata, resources are becoming too scarce to meet the need for clinical treatment. Some endophytic fungal strains that produce HupA were isolated from H. serrate in previous studies. In this article, the diversity of the endophytic fungal community within H. serrata was observed and the relevance to the production of HupA by the host plant was further analyzed. A total of 1167 strains were obtained from the leaves of H. serrata followed by the stems (1045) and roots (824). The richness as well as diversity of endophytic fungi within the leaf and stem were higher than in the root. The endophytic fungal community was similar within stems as well as in leaves at all taxonomic levels. The 11 genera (Derxomyces, Lophiostoma, Cyphellophora, Devriesia, Serendipita, Kurtzmanomyces, Mycosphaerella, Conoideocrella, Brevicellicium, Piskurozyma, and Trichomerium) were positively correlated with HupA content. The correlation index of Derxomyces with HupA contents displayed the highest value (CI = 0.92), whereas Trichomerium showed the lowest value (CI = 0.02). Through electrospray ionization mass spectrometry (ESI-MS), it was confirmed that the HS7-1 strain could produce HupA and the total alkaloid concentration was 3.7 ug/g. This study will enable us to screen and isolate the strain that can produce HupA and to figure out the correlation between endophytic fungal diversity with HupA content in different plant organs. This can provide new insights into the screening of strains that can produce HupA more effectively.


Assuntos
Alcaloides/biossíntese , Biodiversidade , Endófitos/classificação , Endófitos/metabolismo , Fungos/classificação , Fungos/metabolismo , Huperzia/microbiologia , Endófitos/isolamento & purificação , Endófitos/fisiologia , Fungos/isolamento & purificação , Fungos/fisiologia , Sesquiterpenos
4.
World J Microbiol Biotechnol ; 30(12): 3101-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25212543

RESUMO

Huperzine A is isolated from Huperzia serrata and is used for treatment of Alzheimer's disease, due to its low toxicity and long effective period. The decrease in H. serrata sources means that natural huperzine A cannot meet the needs of clinical therapy. In this study, >200 endophytic fungal strains were isolated from H. serrata, and screened using high-performance liquid chromatography. Strain ES026 produced huperzine A. Production was identified and quantified by liquid chromatography-tandem mass spectrometry, and the yield of huperzine A was 1 µg/g dried mycelium. ES026 strain was identified as Colletotrichum gloeosporioides by morphology, polymerase chain reaction with species-specific primers and rDNA internal transcribed spacer sequence. ES026 contributes to the breeding of cultivated strains with high yield of huperzine A. Meanwhile, the strain was suitable for the study of biosynthesis of huperzine A.


Assuntos
Alcaloides/metabolismo , Colletotrichum/classificação , Colletotrichum/metabolismo , Endófitos/classificação , Endófitos/metabolismo , Huperzia/microbiologia , Sesquiterpenos/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Análise por Conglomerados , Colletotrichum/genética , Colletotrichum/isolamento & purificação , DNA Fúngico/química , DNA Fúngico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Endófitos/genética , Endófitos/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Espectrometria de Massas em Tandem
5.
J Fungi (Basel) ; 4(2)2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29724011

RESUMO

The genus Artemisia, a collection of ~400 hardy herbaceous plant and shrub species, is an important resource contributing to chemistry, medicine, agriculture, industry, and ecology. Its communities of endophytic fungi have only recently begun to be explored. Summarized from studies conducted on the fungal endophytes in Artemisia species, both fungal phylogenetic diversity and the associated bioactivity was examined. Isolations from 14 species of Artemisia have led to 51 genera of fungal endophytes, 28 families, and 18 orders. Endophytes belonged mainly to Ascomycota, except for two taxa of Cantharellales and Sporidiobolales, one taxon of Mucoromycota, and one species of Oomycota. The mostly common families were Pleosporaceae, Trichocomaceae, Leptosphaeriaceae, and Botryosphaeriaceae (relative abundance = 14.89, 8.51, 7.14 and 6.38, respectively). In the search for bioactive metabolites, 27 novel compounds were characterized and 22 metabolites were isolated between 2006 and 2017. The first study on endophytic fungi isolated from species of Artemisia was published but 18 years ago. This summary of recently acquired data illustrates the considerable diversity of biological purposes addressed by fungal endophytes of Artemisia spp.

6.
J Fungi (Basel) ; 4(1)2018 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-29382076

RESUMO

Artemisia is a plant genus highly studied for its medicinal applications. The studies on the associated fungal endophytes are scarce. Ten plants specimens of Artemisia thuscula from Tenerife and La Palma were sampled to isolate the endophytic fungi. Identification of the endophytic fungi was based on morphology, Internal Transcribed Spacer (ITS) and Large Subunit (LSU) regions sequencing and indicates 37 fungal species affiliated to 25 fungal genera. Colonization rate varied among plants (CR = 25% to 92.11%). The most dominant colonizers found were Alternaria alternata (CF = 18.71%), Neofusicoccum sp. (CF = 8.39%) and Preussia sp. (CF = 3.23). Tendency for host specificity of most endophytic fungal species was observed. Sorensen-Dice index revealed that of 45 cases in the matrix, 27 of them were of zero similarity. Further, only one case was found to have 57% similarity (TF2 and TF7) and one case with 50% similarity (TF1 and TF4). The rest of the cases had values ranging between 11% and 40% similarity. Diversity indices like Brillouin, Margalef species richness, Simpson index of diversity and Fisher's alpha, revealed plants from La Palma with higher values than plants from Tenerife. Three nutrient media (i.e., potato dextrose agar-PDA, lignocellulose agar-LCA, and tomato juice agar-V8) were used in a case study and revealed no differences in terms of colonization rate when data was averaged. Colonization frequency showed several species with preference for nutrient medium (63% of the species were isolated from only one nutrient medium). For the phylogenetic reconstruction using the Bayesian method, 54 endophytic fungal ITS sequences and associated GenBank sequences were analyzed. Ten orders (Diaporthales, Dothideales, Botryosphaeriales, Hypocreales, Trichosphaeriales, Amphisphaeriales, Xylariales, Capnodiales, Pleosporales and Eurotiales) were recognized. Several arrangements of genera draw the attention, like Aureobasidium (Dothideales) and Aplosporella (Botryosphaeriales) which are clustered with a recent ancestor (BS = 0.97).

7.
PLoS One ; 10(3): e0120809, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25799531

RESUMO

Huperzine A is important in the treatment of Alzheimer's disease. There are major challenges for the mass production of huperzine A from plants due to the limited number of huperzine-A-producing plants, as well as the low content of huperzine A in these plants. Various endophytic fungi produce huperzine A. Colletotrichum gloeosporioides ES026 was previously isolated from a huperzine-A-producing plant Huperzia serrata, and this fungus also produces huperzine A. In this study, de novo RNA sequencing of C. gloeosporioides ES026 was carried out with an Illumina HiSeq2000. A total of 4,324,299,051 bp from 50,442,617 high-quality sequence reads of ES026 were obtained. These raw data were assembled into 24,998 unigenes, 40,536,684 residues and 19,790 genes. The majority of the unique sequences were assigned to corresponding putative functions based on BLAST searches of public databases. The molecular functions, biological processes and biochemical pathways of these unique sequences were determined using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) assignments. A gene encoding copper amine oxidase (CAO) (unigene 9322) was annotated for the conversion of cadaverine to 5-aminopentanal in the biosynthesis of huperzine A. This gene was also detected in the root, stem and leaf of H. serrata. Furthermore, a close relationship was observed between expression of the CAO gene (unigene 9322) and quantity of crude huperzine A extracted from ES026. Therefore, CAO might be involved in the biosynthesis of huperzine A and it most likely plays a key role in regulating the content of huperzine A in ES026.


Assuntos
Alcaloides/biossíntese , Colletotrichum/genética , Colletotrichum/metabolismo , Perfilação da Expressão Gênica , Genes Fúngicos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de RNA , Amina Oxidase (contendo Cobre)/genética , Colletotrichum/enzimologia , Ontologia Genética , Repetições de Microssatélites/genética , Anotação de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sesquiterpenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA