Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Toxicol Environ Health A ; 78(7): 432-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25785557

RESUMO

The production of bioactive compounds either toxic or with pharmacological applications by cyanobacteria is well established. However, picoplanktonic forms within this group of organisms have rarely been studied in this context. In this study, the toxicological potential of picocyanobacteria from a clade of marine Cyanobium strains isolated from the Portuguese coast was examined using different biological models. First, strains were identified by applying morphological and molecular approaches and cultured under lab conditions. A crude extract and three fractions reflecting a preliminary segregation of lipophilic metabolites were tested for toxicity with the marine microalga Nannochloropsis sp., the bacteria Pseudomonas sp., the brine shrimp Artemia salina, and fertilized eggs of the sea urchin Paracentrotus lividus. No significant apparent adverse effects were noted against Artemia salina. However, significant adverse effects were found in all other assays, with an inhibition of Nannochloropsis sp. and Pseudomonas sp. growth and marked reduction in Paracentrotus lividus larvae length. The results obtained indicated that Cyanobium genus may serve as a potential source of interesting bioactive compounds and emphasize the importance of also studying smaller picoplanktonic fractions of marine cyanobacteria.


Assuntos
Organismos Aquáticos/microbiologia , Cianobactérias/isolamento & purificação , Microalgas/microbiologia , Animais , Artemia/microbiologia , Bioensaio , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Clonagem Molecular , Cianobactérias/classificação , Cianobactérias/metabolismo , DNA Bacteriano/genética , Larva/microbiologia , Filogenia , Análise de Sequência de DNA
2.
Mar Drugs ; 12(1): 98-114, 2013 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-24384871

RESUMO

The oceans remain a major source of natural compounds with potential in pharmacology. In particular, during the last few decades, marine cyanobacteria have been in focus as producers of interesting bioactive compounds, especially for the treatment of cancer. In this study, the anticancer potential of extracts from twenty eight marine cyanobacteria strains, belonging to the underexplored picoplanktonic genera, Cyanobium, Synechocystis and Synechococcus, and the filamentous genera, Nodosilinea, Leptolyngbya, Pseudanabaena and Romeria, were assessed in eight human tumor cell lines. First, a crude extract was obtained by dichloromethane:methanol extraction, and from it, three fractions were separated in a Si column chromatography. The crude extract and fractions were tested in eight human cancer cell lines for cell viability/toxicity, accessed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and lactic dehydrogenase release (LDH) assays. Eight point nine percent of the strains revealed strong cytotoxicity; 17.8% showed moderate cytotoxicity, and 14.3% assays showed low toxicity. The results obtained revealed that the studied genera of marine cyanobacteria are a promising source of novel compounds with potential anticancer activity and highlight the interest in also exploring the smaller filamentous and picoplanktonic genera of cyanobacteria.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Cianobactérias/química , Antineoplásicos/isolamento & purificação , Oceano Atlântico , Produtos Biológicos/isolamento & purificação , Linhagem Celular Tumoral , Corantes , Cianobactérias/classificação , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , L-Lactato Desidrogenase/química , Toxinas Marinhas , Portugal , Especificidade da Espécie , Sais de Tetrazólio , Tiazóis
3.
Toxins (Basel) ; 10(7)2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30021957

RESUMO

Marine sponges and cyanobacteria have a long history of co-evolution, with documented genome adaptations in cyanobionts. Both organisms are known to produce a wide variety of natural compounds, with only scarce information about novel natural compounds produced by cyanobionts. In the present study, we aimed to address their toxicological potential, isolating cyanobacteria (n = 12) from different sponge species from the coast of Portugal (mainland, Azores, and Madeira Islands). After large-scale growth, we obtained both organic and aqueous extracts to perform a series of ecologically-relevant bioassays. In the acute toxicity assay, using nauplii of Artemia salina, only organic extracts showed lethality, especially in picocyanobacterial strains. In the bioassay with Paracentrotus lividus, both organic and aqueous extracts produced embryogenic toxicity (respectively 58% and 36%), pointing to the presence of compounds that interfere with growth factors on cells. No development of pluteus larvae was observed for the organic extract of the strain Chroococcales 6MA13ti, indicating the presence of compounds that affect skeleton formation. In the hemolytic assay, none of the extracts induced red blood cells lysis. Organic extracts, especially from picoplanktonic strains, proved to be the most promising for future bioassay-guided fractionation and compounds isolation. This approach allows us to classify the compounds extracted from the cyanobacteria into effect categories and bioactivity profiles.


Assuntos
Artemia/fisiologia , Cianobactérias , Paracentrotus/fisiologia , Animais , Cianobactérias/isolamento & purificação , Poríferos/microbiologia , Testes de Toxicidade Aguda
4.
J Appl Phycol ; 30(3): 1437-1451, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29899596

RESUMO

Cyanobacteria are a well-known source of bioproducts which renders culturable strains a valuable resource for biotechnology purposes. We describe here the establishment of a cyanobacterial culture collection (CC) and present the first version of the strain catalog and its online database (http://lege.ciimar.up.pt/). The LEGE CC holds 386 strains, mainly collected in coastal (48%), estuarine (11%), and fresh (34%) water bodies, for the most part from Portugal (84%). By following the most recent taxonomic classification, LEGE CC strains were classified into at least 46 genera from six orders (41% belong to the Synechococcales), several of them are unique among the phylogenetic diversity of the cyanobacteria. For all strains, primary data were obtained and secondary data were surveyed and reviewed, which can be reached through the strain sheets either in the catalog or in the online database. An overview on the notable biodiversity of LEGE CC strains is showcased, including a searchable phylogenetic tree and images for all strains. With this work, 80% of the LEGE CC strains have now their 16S rRNA gene sequences deposited in GenBank. Also, based in primary data, it is demonstrated that several LEGE CC strains are a promising source of extracellular polymeric substances (EPS). Through a review of previously published data, it is exposed that LEGE CC strains have the potential or actual capacity to produce a variety of biotechnologically interesting compounds, including common cyanotoxins or unprecedented bioactive molecules. Phylogenetic diversity of LEGE CC strains does not entirely reflect chemodiversity. Further bioprospecting should, therefore, account for strain specificity of the valuable cyanobacterial holdings of LEGE CC.

5.
Sci Rep ; 6: 23436, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26996104

RESUMO

Terpenes, a large family of natural products with important applications, are commonly associated with plants and fungi. The diterpenoids dehydroabietic and abietic acids are defense metabolites abundant in resin, and are used as biomarkers for conifer plants. We report here for the first time that the two diterpenoid acids are produced by members of several genera of cyanobacteria. Dehydroabietic acid was isolated from two cyanobacterial strains and its identity was confirmed spectroscopically. One or both of the diterpenoids were detected in the cells of phylogenetically diverse cyanobacteria belonging to four cyanobacterial 'botanical orders', from marine, estuarine and inland environments. Dehydroabietic acid was additionally found in culture supernatants. We investigated the natural role of the two resin acids in cyanobacteria using ecologically-relevant bioassays and found that the compounds inhibited the growth of a small coccoid cyanobacterium. The unexpected discovery of dehydroabietic and abietic acids in a wide range of cyanobacteria has implications for their use as plant biomarkers.


Assuntos
Abietanos/biossíntese , Cianobactérias/metabolismo , Traqueófitas/metabolismo , Abietanos/química , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA