Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 18(12): 1350-1357, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406367

RESUMO

Driven by the potential applications of ionic liquids (ILs) in many emerging electrochemical technologies, recent research efforts have been directed at understanding the complex ion ordering in these systems, to uncover novel energy storage mechanisms at IL-electrode interfaces. Here, we discover that surface-active ILs (SAILs), which contain amphiphilic structures inducing self-assembly, exhibit enhanced charge storage performance at electrified surfaces. Unlike conventional non-amphiphilic ILs, for which ion distribution is dominated by Coulombic interactions, SAILs exhibit significant and competing van der Waals interactions owing to the non-polar surfactant tails, leading to unusual interfacial ion distributions. We reveal that, at an intermediate degree of electrode polarization, SAILs display optimum performance, because the low-charge-density alkyl tails are effectively excluded from the electrode surfaces, whereas the formation of non-polar domains along the surface suppresses undesired overscreening effects. This work represents a crucial step towards understanding the unique interfacial behaviour and electrochemical properties of amphiphilic liquid systems showing long-range ordering, and offers insights into the design principles for high-energy-density electrolytes based on spontaneous self-assembly behaviour.

2.
Phys Chem Chem Phys ; 22(35): 20114-20122, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32936137

RESUMO

Understanding the transport of sodium ions in ionic liquids is key to designing novel electrolyte materials for sodium-ion batteries. In this work, we combine molecular dynamics simulation and experiments to study how molecular interactions and local ordering affect relevant physico-chemical properties. Ionic transport and local solvation environments are investigated in electrolytes composed of sodium bis(fluorosulfonyl)imide, (Na[FSI]), in N,N-methylpropylpyrrolidinium bis(fluorosulfonyl)imide, [C3C1pyr][FSI], at different salt concentrations. The electrolyte systems are modelled by means of molecular dynamic simulations using a polarizable force field. We show that including polarization effects explicitly in the molecular simulations is required in order to attain a reliable description of the transport properties of sodium in the [C3C1pyr][FSI] electrolyte. The validation of the computational results upon comparison with experimental data allows us to assess the suitability of polarizable force fields in describing and interpreting the structure and dynamics of the sodium salt-ionic liquid system, which is essential to enable the application of IL-based electrolytes in novel energy-storage technologies.

3.
J Chem Phys ; 148(13): 134908, 2018 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-29626876

RESUMO

The properties of mixtures of butyltrimethylammonium bis(trifluoromethylsulfonyl)imide, [N4111][NTf2], with poly(ethyleneglycol) dimethyl ether, PEO, were described as a function of PEO chain size by molecular dynamics simulations. Both PEO chain size and mixture composition revealed to play a significant role in determining the structure and the dynamics of the fluids. The remarkably higher viscosity observed for mixtures composed by 0.25 mole fraction of PEO was attributed to the increase in the gauche population of OCCO dihedral of the polyether of longer chains. The negative solvation enthalpy (ΔsolH < 0) and entropy (ΔsolS < 0) revealed a favorable CO2 absorption by the neat and mixture systems. The CO2 absorption was higher in neat PEO, particularly considering longer chains. The gas solubility in the mixtures presented intermediate values in comparison to the neat PEO and neat ionic liquid. The CO2 solutions had their structures discussed in the light of the calculated radial and spatial distribution functions.

4.
Anal Bioanal Chem ; 407(12): 3531-6, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25716467

RESUMO

Recently, ionic liquids (ILs) have been regarded as an attractive water-immiscible phase in liquid-liquid extraction. Because ILs have a wide range of polarity irrespective of their miscibility with water, the possibility of using them as an effective extraction phase for a broad range of contaminants means they are starting to be of particular interest. In this study we investigated a wide variety of ionic liquids, which are known to be hydrolytically stable and of a hydrophobic character, for their potential suitability as passive-sampling media for monitoring selected polyaromatic hydrocarbons. Preliminary research in this field has indicated very promising results using these novel extraction media. Because there is an enormous number of possible cation-anion combinations offering tuneable properties of ionic liquids with the potential for effective passive extraction, we hope this paper will encourage the scientific community to undertake further studies verifying the undoubted usefulness of these alternative solvents as passive samplers for many other groups of analytes. Additionally, because of the unusual solubility properties that have already been proved for ILs, it is very probable that it would soon be possible to deliver a very effective system able to extract analytes differing widely in polarity.


Assuntos
Líquidos Iônicos/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Água/análise , Fracionamento Químico/métodos , Solubilidade , Água/química
5.
J Chem Phys ; 143(6): 064503, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26277141

RESUMO

We report experimental results on the diffusivity of water in two ionic liquids obtained using the pulsed-gradient spin-echo NMR method. Both ionic liquids have the same cation, 1-butyl-1-methylpyrrolidinium, but different trifluoromethyl-containing anions. One has a strongly hydrophobic anion, bis(trifluoromethylsulfonyl)amide, while the second has a hydrophilic anion, trifluoromethylsulfonate. Transport of water in these ionic liquids is much faster than would be predicted from hydrodynamic laws, indicating that the neutral water molecules experience a very different friction than the anions and cations at the molecular level. Temperature-dependent viscosities, conductivities, and densities are reported as a function of water concentration to further analyze the properties of the ionic liquid-water mixtures. These results on the properties of water in ionic liquids should be of interest to researchers in diverse areas ranging from separations, solubilizing biomass and energy technologies.


Assuntos
Líquidos Iônicos/química , Oniocompostos/química , Pirrolidinas/química , Água/química , Amidas/química , Ânions/química , Cátions/química , Difusão , Fricção , Hidrodinâmica , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Prótons por Ressonância Magnética , Temperatura , Viscosidade
6.
Chemphyschem ; 13(7): 1753-63, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22434786

RESUMO

The solvation of glycine in two ionic liquids (ILs), namely, 1-butyl-3-methylimidazolium acetate, [C(1)C(4)Im][OAc], and 1-butyl-3-methylimidazolium trifluoroacetate, [C(1)C(4)Im][TFA], was studied by a combination of experimental and theoretical methods. The solubility of glycine in both ILs was determined at 333.15 K to be (8.1±0.5) and (1.0±0.5) wt % in [C(1)C(4)Im][OAc] and [C(1)C(4)Im][TFA], respectively. By IR spectroscopy it was found that, when dissolved in the ILs, glycine was mainly present in its zwitterionic form. Structural and energetic aspects of the solvation of glycine in the ILs and in mixtures of ILs and water were investigated by ab initio calculations and molecular dynamic simulations. It was observed that the firstly solvation shell around glycine consisted predominantly of acetate or trifluoroacetate anions, which formed hydrogen bonds either with the carboxylic group of neutral glycine or with the protonated ammonium group of the zwitterionic form. When water is present in the solutions, hydrogen bonds between water and the anion prevail. The overall energy of the system was decomposed into its components between pairs of species. It was established that the dominant contribution to the interaction energy between glycine and the IL was due to hydrogen bonds with the anions and the statistics of hydrogen bonds were analysed.


Assuntos
Glicina/química , Imidazóis/química , Líquidos Iônicos/química , Água/química , Halogenação , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Solubilidade , Espectrofotometria Infravermelho , Temperatura , Termodinâmica
7.
Chemphyschem ; 13(7): 1825-35, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22378633

RESUMO

We present a study on the phase equilibrium behaviour of binary mixtures containing two 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide-based ionic liquids, [C(n)mim] [NTf(2)] (n=2 and 4), mixed with diethylamine or triethylamine as a function of temperature and composition using different experimental techniques. Based on this work, two systems showing an LCST and one system with a possible hourglass shape are measured. Their phase behaviours are then correlated and predicted by using Flory-Huggins equations and the UNIQUAC method implemented in Aspen. The potential of the COSMO-RS methodology to predict the phase equilibria was also tested for the binary systems studied. However, this methodology is unable to predict the trends obtained experimentally, limiting its use for systems involving amines in ionic liquids. The liquid-state structure of the binary mixture ([C(2)mim] [NTf(2)]+diethylamine) is also investigated by molecular dynamics simulation and neutron diffraction. Finally, the absorption of gaseous ethane by the ([C(2)mim][NTf(2)]+diethylamine) binary mixture is determined and compared with that observed in the pure solvents.

8.
Phys Chem Chem Phys ; 13(30): 13518-26, 2011 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-21643581

RESUMO

Properties of the surface of ionic liquids, such as surface tension, ordering, and charge and density profiles, were studied using molecular simulation. Two types of modification in the molecular structure of imidazolium cations were studied: the length of the alkyl side chain and the presence of a polar hydroxyl group at the end of the side chain. Four ionic liquids were considered: 1-ethyl-3-methylimidazolium tetrafluoroborate, [C(2)C(1)im][BF(4)]; 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate, [C(2)OHC(1)im][BF(4)]; 1-octyl-3-methylimidazolium tetrafluoroborate, [C(8)C(1)im][BF(4)] and 1-(8-hydroxyoctyl)-3-methylimidazolium tetrafluoroborate, [C(8)OHC(1)im][BF(4)]. The surface tension was calculated using both mechanical and thermodynamic definitions, with consistent treatment of the long-range corrections. The simulations reproduce the available experimental values of surface tension with a maximum deviation of ±10%. This energetic characterization of the interface is completed by microscopic structural analysis of orientational ordering at the interface and density profiles along the direction normal to the interface. The presence of the hydroxyl group modifies the local structure at the interface, leading to a less organized liquid phase. The results allow us to relate the surface tension to the structural ordering at the liquid-vacuum interface.

9.
Phys Chem Chem Phys ; 13(30): 13527-36, 2011 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-21603700

RESUMO

Ionic liquids are a stabilizing medium for the in situ synthesis of ruthenium nanoparticles. Herein we show that the addition of molecular polar solutes to the ionic liquid, even in low concentrations, eliminates the role of the ionic liquid 3D structure in controlling the size of ruthenium nanoparticles, and can induce their aggregation. We have performed the synthesis of ruthenium nanoparticles by decomposition of [Ru(COD)(COT)] in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(1)C(4)Im][NTf(2)], under H(2) in the presence of varying amounts of water or 1-octylamine. For water added during the synthesis of metallic nanoparticles, a decrease of the solubility in the ionic liquid was observed, showed by nanoparticles located at the interface between aqueous and ionic phases. When 1-octylamine is present during the synthesis, stable nanoparticles of a constant size are obtained. When 1-octylamine is added after the synthesis, aggregation of the ruthenium nanoparticles is observed. In order to explain these phenomena, we have explored the molecular interactions between the different species using (13)C-NMR and DOSY (Diffusional Order Spectroscopy) experiments, mixing calorimetry, surface tension measurements and molecular simulations. We conclude that the behaviour of the ruthenium nanoparticles in [C(1)C(4)Im][NTf(2)] in the presence of 1-octylamine depends on the interaction between the ligand and the nanoparticles in terms of the energetics but also of the structural arrangement of the amine at the nanoparticle's surface.

10.
J Chem Theory Comput ; 17(3): 1606-1617, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33555860

RESUMO

The polarizable CL&Pol force field presented in our previous study, Transferable, Polarizable Force Field for Ionic Liquids (J. Chem. Theory Comput. 2019, 15, 5858, DOI: http://doi.org/10.1021/acs.jctc.9b0068910.1021/acs.jctc.9b00689), is extended to electrolytes, protic ionic liquids (PIL), deep eutectic solvents (DES), and glycols. These systems are problematic in polarizable simulations because they contain either small, highly charged ions or strong hydrogen bonds, which cause trajectory instabilities due to the pull exerted on the induced dipoles. We use a Tang-Toennies (TT) function to dampen, or smear, the interactions between charges and induced dipole at a short range involving small, highly charged atoms (such as hydrogen or lithium), thus preventing the "polarization catastrophe". The new force field gives stable trajectories and is validated through comparison with experimental data on density, viscosity, and ion diffusion coefficients of liquid systems of the above-mentioned classes. The results also shed light on the hydrogen-bonding pattern in ethylammonium nitrate, a PIL, for which the literature contains conflicting views. We describe the implementation of the TT damping function, of the temperature-grouped Nosé-Hoover thermostat for polarizable molecular dynamics (MD) and of the periodic perturbation method for viscosity evaluation from non-equilibrium trajectories in the LAMMPS MD code. The main result of this work is the wider applicability of the CL&Pol polarizable force field to new, important classes of fluids, achieving robust trajectories and a good description of equilibrium and transport properties in challenging systems. The fragment-based approach of CL&Pol will allow ready extension to a wide variety of PILs, DES, and electrolytes.

11.
J Phys Chem B ; 113(29): 9894-900, 2009 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-19569634

RESUMO

The diverse dipole and quadrupole moments of benzene and its 12 fluorinated derivatives are correlated to their solubility in the ionic liquid 1-ethyl-3-methyl-imidazolium bis(trifluoromethanesulfonyl)imide. Albeit empirical, the correlation was built taken into account molecular insights gained from ab initio calculations of the isolated aromatic solute molecules and molecular dynamics simulations of all 13 aromatic solute plus ionic liquid solvent binary mixtures. This type of molecular-assisted approach unveiled a simple correlation between the dipole and quadrupole moments of the solutes and the ionic liquid solvent. It also revealed the complex nature of the interactions between aromatic compounds and ionic liquids, with the charge density functions of the former acting as a sort of molecular template that promotes the segregation of the ions of the latter and defines the fluid phase behavior (liquid-liquid demixing) of the corresponding binary mixtures. Such an approach can be extended to other systems involving the interactions of different types of solutes with ionic liquid solvents.

12.
J Phys Chem B ; 113(1): 170-7, 2009 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-19195088

RESUMO

The solute-solvent interactions and the site-site distances between toluene and ionic liquids (ILs) 1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide [BMMIm][NTf2] and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [BMIm][NTf2] at various molar ratios were determined by NMR experiments (1D NMR, rotating-frame Overhauser effect spectroscopy (ROESY)) and by molecular simulation using an atomistic force field. The difference in behavior of toluene in these ILs has been related to the presence of H-bonding between the C2-H and the anion in [BMIm][NTf2] generating a stronger association (>20 kJ.mol-1) than in the case of [BMMIm][NTf2]. Consequently, toluene cannot cleave this H-bond in [BMIm][NTf2] which remains in large aggregates of ionic pairs. However, toluene penetrates the less strongly bonded network of [BMMIm][NTf2] and interacts with [BMMIm] cations.

13.
J Phys Chem B ; 110(34): 16816-8, 2006 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-16927967

RESUMO

The existence of microphase segregation between polar and nonpolar domains in ionic liquids changes the way in which solvation can be understood in these media. Here, we perform a structural analysis on the solvation of nonpolar, polar, and associating solutes in imidazolium-based ionic liquids, where this novel way of understanding their nature as microsegregated solvents is correlated with their ability to interact with different species in diverse and complex ways.

14.
Chemosphere ; 64(11): 1829-36, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16530806

RESUMO

New data on the vapour pressures and aqueous solubility of 1,8-dichlorooctane and 1,8-dibromooctane are reported as a function of temperature between 20 degrees C and 80 degrees C and 1 degrees C and 40 degrees C, respectively. For the vapour pressures, a static method was used during the measurements which have an estimated uncertainty between 3% and 5%. The aqueous solubilities were determined using a dynamic saturation column method and the values are accurate to within +/-10%. 1,8-Dichlorooctane is more volatile than 1,8-dibromooctane in the temperature range covered (p(sat) varies from 3 to 250 Pa and from 0.53 to 62 Pa, respectively) and is also approximately three times more soluble in water (mole fraction solubilities at 25 degrees C of 5.95 x 10(-7) and 1.92 x 10(-7), respectively). A combination of the two sets of data allowed the calculation of the Henry's law constants and the air water partition coefficients. A simple group contribution concept was used to rationalize the data obtained.


Assuntos
Ar , Hidrocarbonetos Halogenados/química , Octanos/química , Água , Solubilidade , Termodinâmica
15.
J Phys Chem B ; 118(51): 14860-9, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25437753

RESUMO

The solvation and the onset of dissolution of a cellulose I(ß) microcrystal in ionic liquid media are studied by molecular simulation. Ionic liquids can dissolve large amounts of cellulose, which can later be regenerated from solution, but their high viscosity is an inconvenience. Hydrogen bonding between the anion of the ionic liquid and cellulose is the main aspect determining dissolution. Here we try to elucidate the role of a molecular cosolvent, dimethyl sulfoxide (DMSO), which is an aprotic polar compound, in the system composed of cellulose and the ionic liquid 1-butyl-3-methylimidazolium acetate. We calculated quantities related to specific interactions (mainly hydrogen bonds), conformations, and the structure of local solvation environments, both for a solvated oligomer chain of cellulose and for a model microfibril composed of 36 chains in the I(ß) crystal structure. We compare two solvent systems: the pure ionic liquid and a mixed solvent with an equimolar composition in ionic liquid and DMSO. All entities are represented by detailed all-atom, fully flexible force fields. The main conclusions are that DMSO behaves as an "innocent" cosolvent, lowering the viscosity and accelerating mass transport in the system, but without interacting specifically with cellulose or disrupting the interactions between cellulose with the anions of the ionic liquid. An understanding of solvation in mixed solvents composed of ionic liquids and molecular compounds can enable the design of high-performance media for the use of biomass materials.

16.
J Phys Chem B ; 117(24): 7416-25, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23713882

RESUMO

The influence of the presence of imidazolium side chain unsaturation on the solubility of ethane and ethylene was studied in three ionic liquids: 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide-saturated alkyl side-chain in the cation; 1-methyl-3-(buten-3-yl)imidazolium bis(trifluorosulfonyl)imide-double bond in the side-chain of the cation; and 1-methyl-3-benzylimidazolium bis(trifluorosulfonyl)imide-benzyl group in the side-chain of the cation. The solubility of both gases decreases when the side-chain of the cations is functionalized with an unsaturated group. This can be explained by a less favorable enthalpy of solvation. The difference of solubility between ethane and ethylene can be explained from a balance of enthalpic and entropic factors: for the ionic liquid with the saturated alkyl side-chain and the benzyl-substituted side-chain, it is the favorable entropy of solvation that explains the larger ethylene solubility, whereas in the case of the saturated side-chain, it is the more favorable enthalpy of solvation. Molecular simulation allowed the identification of the mechanisms of solvation and the preferential solvation sites for each gas in the different ionic liquids. Simulations have shown that the entropy of solvation is more favorable when the presence of the gas weakens the cation-anion interactions or when the gas can be solvated near different sites of the ionic liquid.


Assuntos
Etano/química , Etilenos/química , Imidazóis/química , Líquidos Iônicos/química , Simulação de Dinâmica Molecular , Viscosidade
17.
J Phys Chem B ; 116(49): 14416-25, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23145571

RESUMO

The absorption of carbon dioxide by the pure ionic liquids 1-ethyl-3-methylimidazolium acetate ([C(1)C(2)Im][OAc]) and 1-butyl-3-methylimidazolium acetate ([C(1)C(4)Im][OAc]) was studied experimentally from 303 to 343 K. As expected, the mole fraction of absorbed carbon dioxide is high (0.16 at 303 K and 5.5 kPa and 0.19 at 303 and 9.6 KPa for [C(1)C(2)Im][OAc] and [C(1)C(4)Im][OAc], respectively), does not obey Henry's law, and is compatible with the chemisorption of the gas by the liquid. Evidence of a chemical reaction between the gas and the liquid was found both by NMR and by molecular simulation. In the presence of water, the properties of the liquid absorber significantly change, especially the viscosity that decreases by as much as 25% (to 78 mPa s) and 30% (to 262 mPa s) in the presence of 0.2 mol fraction of water for [C(1)C(2)Im][OAc] and [C(1)C(2)Im][OAc] at 303 K, respectively. The absorption of carbon dioxide decreases when the water concentration increases: a decrease of 83% in CO(2) absorption is found for [C(1)C(4)Im][OAc] with 0.6 mol fraction of water at 303 K. It is proved in this work, by combining experimental data with molecular simulation, that the presence of water not only renders the chemical reaction between the gas and the ionic liquid less favorable but also lowers the (physical) solubility of the gas as it competes by the same solvation sites of the ionic liquid. The lowering of the viscosity of the liquid absorbent largely compensates these apparent drawbacks and the mixtures of [C(1)C(2)Im][OAc] and [C(1)C(2)Im][OAc] with water seem promising to be used for carbon dioxide capture.


Assuntos
Dióxido de Carbono/química , Imidazóis/química , Líquidos Iônicos/química , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Água/química
18.
Faraday Discuss ; 154: 41-52; discussion 81-96, 465-71, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22455013

RESUMO

In this work, we have studied the solubility and the thermodynamic properties of solvation, between 298 and 343 K and at pressures close to atmospheric, of ethane and n-butane in several ionic liquids based on the bis[(trifluoromethyl) sulfonyl]imide anion and on 1-alkyl-3-methylimidazolium cations, [CnC1Im] [NTf2], with alkyl side-chains varying from two to ten carbon atoms. The solubility of butane is circa one order of magnitude larger than that of ethane with mole fractions as high as 0.15 in [C10C1Im][NTf2] at 300 K. The solubilities of both n-butane and ethane gases are higher for ionic liquids with longer alkyl chains. The behaviour encountered is explained by the preferential solvation of the gases in the non-polar domains of the solvents, the larger solubility of n-butane being attributed to the dispersive contributions to the interaction energy. The rise in solubility with increasing size of the alkyl-side chain is explained by a more favourable entropy of solvation in the ionic liquids with larger cations. These conclusions are corroborated by molecular dynamics simulation studies.


Assuntos
Butanos/química , Etano/química , Imidazóis/química , Imidas/química , Líquidos Iônicos/química , Sondas Moleculares/química , Simulação de Dinâmica Molecular , Estrutura Molecular , Solubilidade , Termodinâmica
19.
Chemosphere ; 89(3): 327-33, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22633862

RESUMO

Several physico-chemical properties relevant to determine the environmental impact of ionic liquids - aqueous solubility, octanol/water partition coefficient, chromatographically derived lipophilicity and infinite dilution diffusion coefficients in water - were measured in ionic liquids based on pyridinium, ammonium and pyrrolidinium cations with bis(trifluoromethylsulfonyl)imide anions. The influence of the presence of hydroxyl or ester groups in the physico-chemical properties of these liquids was checked. It appeared that the presence of functional oxygenated moieties reduces the lipophilicity of ionic liquids and so decreases the risk of bioaccumulation in environment.


Assuntos
Líquidos Iônicos/química , Compostos de Piridínio/química , Pirrolidinas/química , Cátions/química , Fenômenos Químicos , Difusão , Meio Ambiente , Líquidos Iônicos/toxicidade , Lipídeos/química , Octanóis/química , Compostos de Amônio Quaternário , Solubilidade , Água/química
20.
Dalton Trans ; 41(45): 13919-26, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23023650

RESUMO

Suspensions of small sized (1-2.5 nm) ruthenium nanoparticles (RuNPs) have been obtained by decomposition, under H(2), of (η(4)-1,5-cyclooctadiene)(η(6)-1,3,5-cyclooctatriene)ruthenium(0), [Ru(COD)(COT)], in the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(1)C(4)Im][NTf(2)], and in the presence of different compounds acting as ligands: C(8)H(17)NH(2), PPhH(2), PPh(2)H and H(2)O. Previous and new liquid NMR experiments showed that the ligands are coordinated or in the proximity to the surface of the RuNPs. Herein is reported how the ligand affects the catalytic performance (activity and selectivity) compared to a ligand-free system of RuNPs, when RuNPs in [C(1)C(4)Im][NTf(2)] are used as catalysts for the hydrogenation of various unsaturated compounds (1,3-cyclohexadiene, limonene and styrene). It has been observed that σ-donor ligands increase the activity of the nanoparticles, contrarily to π-acceptor ones.


Assuntos
Imidazóis/química , Líquidos Iônicos/química , Nanopartículas Metálicas/química , Compostos Organometálicos/química , Rutênio/química , Sulfonamidas/química , Catálise , Hidrogenação , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA