Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(8): e2306334, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37817372

RESUMO

While a multitude of studies have appeared touting the use of molecules as electronic components, the design of molecular switches is crucial for the next steps in molecular electronics. In this work, single-molecule devices incorporating spiropyrans, made using break junction techniques, are described. Linear spiropyrans with electrode-contacting groups linked by alkynyl spacers to both the indoline and chromenone moieties have previously provided very low conductance values, and removing the alkynyl spacer has resulted in a total loss of conductance. An orthogonal T-shaped approach to single-molecule junctions incorporating spiropyran moieties in which the conducting pathway lies orthogonal to the molecule backbone is described and characterized. This approach has provided singlemolecule conductance features with good correlation to molecular length. Additional higher conducting states are accessible using switching induced by UV light or protonation. Theoretical modeling demonstrates that upon (photo)chemical isomerization to the merocyanine, two cooperating phenomena increase conductance: release of steric hindrance allows the conductance pathway to become more planar (raising the mid-bandgap transmission) and a bound state introduces sharp interference near the Fermi level of the electrodes similarly responding to the change in state. This design step paves the way for future use of spiropyrans in single-molecule devices and electrosteric switches.

2.
J Am Chem Soc ; 144(28): 12698-12714, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35767015

RESUMO

This paper describes the syntheses of several functionalized dihydropyrene (DHP) molecular switches with different substitution patterns. Regioselective nucleophilic alkylation of a 5-substituted dimethyl isophthalate allowed the development of a workable synthetic protocol for the preparation of 2,7-alkyne-functionalized DHPs. Synthesis of DHPs with surface-anchoring groups in the 2,7- and 4,9-positions is described. The molecular structures of several intermediates and DHPs were elucidated by X-ray single-crystal diffraction. Molecular properties and switching capabilities of both types of DHPs were assessed by light irradiation experiments, spectroelectrochemistry, and cyclic voltammetry. Spectroelectrochemistry, in combination with density functional theory (DFT) calculations, shows reversible electrochemical switching from the DHP forms to the cyclophanediene (CPD) forms. Charge-transport behavior was assessed in single-molecule scanning tunneling microscope (STM) break junctions, combined with density functional theory-based quantum transport calculations. All DHPs with surface-contacting groups form stable molecular junctions. Experiments show that the molecular conductance depends on the substitution pattern of the DHP motif. The conductance was found to decrease with increasing applied bias.

3.
Inorg Chem ; 54(11): 5487-94, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25974862

RESUMO

The ligands 4'-(4-(methylthio)phenyl)-2,2':6',2″-terpyridine (L(1)), 4'-((4-(methylthio)phenyl)ethynyl)- 2,2':6',2″-terpyridine (L(2)), and bis(tridentate) bridging ligand 2,3,5,6-tetra(pyridine-2-yl)pyrazine (tpp) were used to prepare the complexes [Ru(L(1))2][PF6]2 ([1][PF6]2, [Ru(L(2))2][PF6]2 ([2][PF6]2), [{(L(1))Ru}(µ-tpp){Ru(L(1))}][PF6]4 ([3][PF6]4), and [{(L(2))Ru}(µ-tpp){Ru(L(2))}][PF6]4 ([4][PF6]4). Crystallographically determined structures give S···S distances of up to 32.0 Å in [4](4+). On the basis of electrochemical estimates, the highest occupied molecular orbitals of these complexes fall between -5.55 and -5.85 eV, close to the work function of clean gold (5.1-5.3 eV). The decay of conductance with molecular length across this series of molecules is approximately exponential, giving rise to a decay constant (pseudo ß-value) of 1.5 nm(-1), falling between decay factors for oligoynes and oligophenylenes. The results are consistent with a tunnelling mechanism for the single-molecule conductance behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA