Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339189

RESUMO

Nqo15 is a subunit of respiratory complex I of the bacterium Thermus thermophilus, with strong structural similarity to human frataxin (FXN), a protein involved in the mitochondrial disease Friedreich's ataxia (FRDA). Recently, we showed that the expression of recombinant Nqo15 can ameliorate the respiratory phenotype of FRDA patients' cells, and this prompted us to further characterize both the Nqo15 solution's behavior and its potential functional overlap with FXN, using a combination of in silico and in vitro techniques. We studied the analogy of Nqo15 and FXN by performing extensive database searches based on sequence and structure. Nqo15's folding and flexibility were investigated by combining nuclear magnetic resonance (NMR), circular dichroism, and coarse-grained molecular dynamics simulations. Nqo15's iron-binding properties were studied using NMR, fluorescence, and specific assays and its desulfurase activation by biochemical assays. We found that the recombinant Nqo15 isolated from complex I is monomeric, stable, folded in solution, and highly dynamic. Nqo15 does not share the iron-binding properties of FXN or its desulfurase activation function.


Assuntos
Frataxina , Ataxia de Friedreich , Humanos , Complexo I de Transporte de Elétrons/metabolismo , Thermus thermophilus/metabolismo , Simulação de Dinâmica Molecular , Ferro/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Ataxia de Friedreich/metabolismo
2.
FASEB J ; 35(3): e21362, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33629768

RESUMO

Friedreich ataxia (FRDA) is a neurodegenerative disease resulting from a severe decrease of frataxin (FXN). Most patients carry a GAA repeat expansion in both alleles of the FXN gene, whereas a small fraction of them are compound heterozygous for the expansion and a point mutation in the other allele. FXN is involved in the mitochondrial biogenesis of the FeS-clusters. Distinctive feature of FRDA patient cells is an impaired cellular respiration, likely due to a deficit of key redox cofactors working as electrons shuttles through the respiratory chain. However, a definite relationship between FXN levels, FeS-clusters assembly dysregulation and bioenergetics failure has not been established. In this work, we performed a comparative analysis of the mitochondrial phenotype of cell lines from FRDA patients, either homozygous for the expansion or compound heterozygotes for the G130V mutation. We found that, in healthy cells, FXN and two key proteins of the FeS-cluster assembly machinery are enriched in mitochondrial cristae, the dynamic subcompartment housing the respiratory chain. On the contrary, FXN widely redistributes to the matrix in FRDA cells with defects in respiratory supercomplexes assembly and altered respiratory function. We propose that this could be relevant for the early mitochondrial defects afflicting FRDA cells and that perturbation of mitochondrial morphodynamics could in turn be critical in terms of disease mechanisms.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/biossíntese , Metabolismo Energético , Ataxia de Friedreich/metabolismo , Proteínas de Ligação ao Ferro/fisiologia , Membranas Mitocondriais/metabolismo , Linhagem Celular , Ataxia de Friedreich/patologia , Humanos , Proteínas de Ligação ao Ferro/genética , Membranas Mitocondriais/patologia , Frataxina
3.
Arch Biochem Biophys ; 691: 108491, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32707090

RESUMO

The relationships between conformational dynamics, stability and protein function are not obvious. Frataxin (FXN) is an essential protein that forms part of a supercomplex dedicated to the iron-sulfur (Fe-S) cluster assembly within the mitochondrial matrix. In humans, the loss of FXN expression or a decrease in its functionality results in Friedreich's Ataxia, a cardio-neurodegenerative disease. Recently, the way in which FXN interacts with the rest of the subunits of the supercomplex was uncovered. This opens a window to explore relationships between structural dynamics and function. In this study, we prepared a set of FXN variants spanning a broad range of conformational stabilities. Variants S160I, S160M and A204R were more stable than the wild-type and showed similar biological activity. Additionally, we prepared SILCAR, a variant that combines S160I, L203C and A204R mutations. SILCAR was 2.4 kcal mol-1 more stable and equally active. Some of the variants were significantly more resistant to proteolysis than the wild-type FXN. SILCAR showed the highest resistance, suggesting a more rigid structure. It was corroborated by means of molecular dynamics simulations. Relaxation dispersion NMR experiments comparing SILCAR and wild-type variants suggested similar internal motions in the microsecond to millisecond timescale. Instead, variant S157I showed higher denaturation resistance but a significant lower function, similarly to that observed for the FRDA variant N146K. We concluded that the contribution of particular side chains to the conformational stability of FXN might be highly subordinated to their impact on both the protein function and the stability of the functional supercomplex.


Assuntos
Proteínas de Ligação ao Ferro/química , Liases de Carbono-Enxofre/química , Biologia Computacional , Humanos , Proteínas de Ligação ao Ferro/genética , Simulação de Dinâmica Molecular , Mutação Puntual , Conformação Proteica , Engenharia de Proteínas , Estabilidade Proteica , Proteólise , Frataxina
4.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348670

RESUMO

Frataxin is a highly conserved protein whose deficiency results in the neurodegenerative disease Friederich's ataxia. Frataxin's actual physiological function has been debated for a long time without reaching a general agreement; however, it is commonly accepted that the protein is involved in the biosynthetic iron-sulphur cluster (ISC) machinery, and several authors have pointed out that it also participates in iron homeostasis. In this work, we use site-directed spin labeling coupled to electron paramagnetic resonance (SDSL EPR) to add new information on the effects of ferric and ferrous iron binding on the properties of human frataxin in vitro. Using SDSL EPR and relating the results to fluorescence experiments commonly performed to study iron binding to FXN, we produced evidence that ferric iron causes reversible aggregation without preferred interfaces in a concentration-dependent fashion, starting at relatively low concentrations (micromolar range), whereas ferrous iron binds without inducing aggregation. Moreover, our experiments show that the ferrous binding does not lead to changes of protein conformation. The data reported in this study reveal that the currently reported binding stoichiometries should be taken with caution. The use of a spin label resistant to reduction, as well as the comparison of the binding effect of Fe2+ in wild type and in the pathological D122Y variant of frataxin, allowed us to characterize the Fe2+ binding properties of different protein sites and highlight the effect of the D122Y substitution on the surrounding residues. We suggest that both Fe2+ and Fe3+ might play a relevant role in the context of the proposed FXN physiological functions.


Assuntos
Dicroísmo Circular/métodos , Compostos Férricos/química , Compostos Ferrosos/química , Proteínas de Ligação ao Ferro/química , Ferro/química , Marcadores de Spin , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Humanos , Concentração de Íons de Hidrogênio , Agregação Patológica de Proteínas , Ligação Proteica , Conformação Proteica , Espectrometria de Fluorescência/métodos , Frataxina
5.
Int J Mol Sci ; 19(10)2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30314343

RESUMO

Hydrogen production in nature is performed by hydrogenases. Among them, [FeFe]-hydrogenases have a peculiar active site, named H-cluster, that is made of two parts, synthesized in different pathways. The cubane sub-cluster requires the normal iron-sulfur cluster maturation machinery. The [2Fe] sub-cluster instead requires a dedicated set of maturase proteins, HydE, HydF, and HydG that work to assemble the cluster and deliver it to the apo-hydrogenase. In particular, the delivery is performed by HydF. In this review, we will perform an overview of the latest knowledge on the maturation machinery of the H-cluster, focusing in particular on HydF.


Assuntos
Hidrogênio/química , Hidrogênio/metabolismo , Hidrogenase/química , Hidrogenase/metabolismo , Ferro/química , Ferro/metabolismo , Catálise , Hidrogenase/classificação , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade
6.
J Biol Chem ; 287(43): 36544-55, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22932901

RESUMO

[FeFe]-hydrogenases are iron-sulfur proteins characterized by a complex active site, the H-cluster, whose assembly requires three conserved maturases. HydE and HydG are radical S-adenosylmethionine enzymes that chemically modify a H-cluster precursor on HydF, a GTPase with a dual role of scaffold on which this precursor is synthesized, and carrier to transfer it to the hydrogenase. Coordinate structural and functional relationships between HydF and the two other maturases are crucial for the H-cluster assembly. However, to date only qualitative analysis of this protein network have been provided. In this work we showed that the interactions of HydE and HydG with HydF are distinct events, likely occurring in a precise functional order driven by different kinetic properties, independently of the HydF GTPase activity, which is instead involved in the dissociation of the maturases from the scaffold. We also found that HydF is able to interact with the hydrogenase only when co-expressed with the two other maturases, indicating that under these conditions it harbors per se all the structural elements needed to transfer the H-cluster precursor, thus completing the maturation process. These results open new working perspectives aimed at improving the knowledge of how these complex metalloenzymes are biosynthesized.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Hidrogenase/biossíntese , Metaloproteínas/biossíntese , Transativadores/metabolismo , Clostridium acetobutylicum/enzimologia , Clostridium acetobutylicum/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Hidrogenase/genética , Cinética , Metaloproteínas/genética , Transativadores/genética
7.
Biochim Biophys Acta ; 1817(12): 2149-57, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22985598

RESUMO

[FeFe] hydrogenases are key enzymes for bio(photo)production of molecular hydrogen, and several efforts are underway to understand how their complex active site is assembled. This site contains a [4Fe-4S]-2Fe cluster and three conserved maturation proteins are required for its biosynthesis. Among them, HydF has a double task of scaffold, in which the dinuclear iron precursor is chemically modified by the two other maturases, and carrier to transfer this unit to a hydrogenase containing a preformed [4Fe-4S]-cluster. This dual role is associated with the capability of HydF to bind and dissociate an iron-sulfur center, due to the presence of the conserved FeS-cluster binding sequence CxHx(46-53)HCxxC. The recently solved three-dimensional structure of HydF from Thermotoga neapolitana described the domain containing the three cysteines which are supposed to bind the FeS cluster, and identified the position of two conserved histidines which could provide the fourth iron ligand. The functional role of two of these cysteines in the activation of [FeFe]-hydrogenases has been confirmed by site-specific mutagenesis. On the other hand, the contribution of the three cysteines to the FeS cluster coordination sphere is still to be demonstrated. Furthermore, the potential role of the two histidines in [FeFe]-hydrogenase maturation has never been addressed, and their involvement as fourth ligand for the cluster coordination is controversial. In this work we combined site-specific mutagenesis with EPR (electron paramagnetic resonance) and HYSCORE (hyperfine sublevel correlation spectroscopy) to assign a role to these conserved residues, in both cluster coordination and hydrogenase maturation/activation, in HydF proteins from different microorganisms.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Hidrogenase/química , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Thermotoga neapolitana/enzimologia , Sítios de Ligação , Domínio Catalítico , Hidrogênio/metabolismo , Hidrogenase/genética , Proteínas Ferro-Enxofre/genética , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Thermotoga neapolitana/crescimento & desenvolvimento
8.
Cell Death Dis ; 14(12): 805, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38062036

RESUMO

Friedreich ataxia (FRDA) is a rare, inherited neurodegenerative disease caused by an expanded GAA repeat in the first intron of the FXN gene, leading to transcriptional silencing and reduced expression of frataxin. Frataxin participates in the mitochondrial assembly of FeS clusters, redox cofactors of the respiratory complexes I, II and III. To date it is still unclear how frataxin deficiency culminates in the decrease of bioenergetics efficiency in FRDA patients' cells. We previously demonstrated that in healthy cells frataxin is closely attached to the mitochondrial cristae, which contain both the FeS cluster assembly machinery and the respiratory chain complexes, whereas in FRDA patients' cells with impaired respiration the residual frataxin is largely displaced in the matrix. To gain novel insights into the function of frataxin in the mitochondrial pathophysiology, and in the upstream metabolic defects leading to FRDA disease onset and progression, here we explored the potential interaction of frataxin with the FeS cluster-containing respiratory complexes I, II and III. Using healthy cells and different FRDA cellular models we found that frataxin interacts with these three respiratory complexes. Furthermore, by EPR spectroscopy, we observed that in mitochondria from FRDA patients' cells the decreased level of frataxin specifically affects the FeS cluster content of complex I. Remarkably, we also found that the frataxin-like protein Nqo15 from T. thermophilus complex I ameliorates the mitochondrial respiratory phenotype when expressed in FRDA patient's cells. Our data point to a structural and functional interaction of frataxin with complex I and open a perspective to explore therapeutic rationales for FRDA targeted to this respiratory complex.


Assuntos
Ataxia de Friedreich , Doenças Neurodegenerativas , Humanos , Transporte de Elétrons , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Membranas Mitocondriais/metabolismo , Doenças Neurodegenerativas/metabolismo
9.
J Biol Chem ; 286(51): 43944-43950, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22057316

RESUMO

[FeFe]-hydrogenases catalyze the reversible production of H2 in some bacteria and unicellular eukaryotes. These enzymes require ancillary proteins to assemble the unique active site H-cluster, a complex structure composed of a 2Fe center bridged to a [4Fe-4S] cubane. The first crystal structure of a key factor in the maturation process, HydF, has been determined at 3 Å resolution. The protein monomer present in the asymmetric unit of the crystal comprises three domains: a GTP-binding domain, a dimerization domain, and a metal cluster-binding domain, all characterized by similar folding motifs. Two monomers dimerize, giving rise to a stable dimer, held together mainly by the formation of a continuous ß-sheet comprising eight ß-strands from two monomers. Moreover, in the structure presented, two dimers aggregate to form a supramolecular organization that represents an inactivated form of the HydF maturase. The crystal structure of the latter furnishes several clues about the events necessary for cluster generation/transfer and provides an excellent model to begin elucidating the structure/function of HydF in [FeFe]-hydrogenase maturation.


Assuntos
Proteínas de Bactérias/química , GTP Fosfo-Hidrolases/química , Hidrogenase/química , Ferro/química , Animais , Proteínas de Bactérias/genética , Sítios de Ligação , Bovinos , Cristalografia por Raios X/métodos , Dimerização , GTP Fosfo-Hidrolases/genética , Guanosina Trifosfato/química , Proteínas Ferro-Enxofre/química , Mutagênese Sítio-Dirigida , Conformação Proteica , Estrutura Secundária de Proteína , Espectrofotometria Ultravioleta/métodos , Thermotoga neapolitana/metabolismo
10.
Antioxidants (Basel) ; 11(8)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36009245

RESUMO

Redox homeostasis is a vital process the maintenance of which is assured by the presence of numerous antioxidant small molecules and enzymes and the alteration of which is involved in many pathologies, including several neurodegenerative disorders. Among the different enzymes involved in the antioxidant response, SOD1 and DJ-1 have both been associated with the pathogenesis of amyotrophic lateral sclerosis and Parkinson's disease, suggesting a possible interplay in their mechanism of action. Copper deficiency in the SOD1-active site has been proposed as a central determinant in SOD1-related neurodegeneration. SOD1 maturation mainly relies on the presence of the protein copper chaperone for SOD1 (CCS), but a CCS-independent alternative pathway also exists and functions under anaerobic conditions. To explore the possible involvement of DJ-1 in such a pathway in vivo, we exposed Drosophila melanogaster to anoxia and evaluated the effect of DJ-1 on fly survival and SOD1 levels, in the presence or absence of CCS. Loss of DJ-1 negatively affects the fly response to the anoxic treatment, but our data indicate that the protective activity of DJ-1 is independent of SOD1 in Drosophila, indicating that the two proteins may act in different pathways.

11.
Biochem Biophys Res Commun ; 405(4): 678-83, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21284939

RESUMO

[FeFe]-hydrogenases have been claimed as the most promising catalysts of hydrogen bioproduction and several efforts have been accomplished to express and purify them. However, previous attemps to obtain a functional recombinant [FeFe]-hydrogenase in heterologous systems such as Escherichia coli failed due to the lack of the specific maturation proteins driving the assembly of its complex active site. The unique exception is that of [FeFe]-hydrogenase from Clostridium pasteurianum that has been expressed in active form in the cyanobacterium Synechococcus PCC 7942, which holds a bidirectional [NiFe]-hydrogenase with a well characterized maturation system, suggesting that the latter is flexible enough to drive the synthesis of a [FeFe]-enzyme. However, the capability of cyanobacteria to correctly fold a [FeFe]-hydrogenase in the absence of its auxiliary maturation proteins is a debated question. In this work, we expressed the [FeFe]-hydrogenase from Chlamydomonas reinhardtii as an active enzyme in the cyanobacterium Synechocystis sp. PCC 6803. Our results, using a different experimental system, confirm that cyanobacteria are able to express a functional [FeFe]-hydrogenase even in the absence of additional chaperones.


Assuntos
Clostridium/enzimologia , Hidrogenase/biossíntese , Proteínas Ferro-Enxofre/biossíntese , Proteínas Recombinantes/biossíntese , Synechocystis/enzimologia , Hidrogênio/metabolismo , Hidrogenase/química , Hidrogenase/genética , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Mutagênese Sítio-Dirigida , Plasmídeos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
12.
Biomedicines ; 9(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34944579

RESUMO

Frataxin (FXN) is a highly conserved mitochondrial protein whose deficiency causes Friedreich's ataxia, a neurodegenerative disease. The precise physiological function of FXN is still unclear; however, there is experimental evidence that the protein is involved in biosynthetic iron-sulfur cluster machinery, redox imbalance, and iron homeostasis. FXN is synthesized in the cytosol and imported into the mitochondria, where it is proteolytically cleaved to the mature form. Its involvement in the redox imbalance suggests that FXN could interact with mitochondrial superoxide dismutase (SOD2), a key enzyme in antioxidant cellular defense. In this work, we use site-directed spin labelling coupled to electron paramagnetic resonance spectroscopy (SDSL-EPR) and fluorescence quenching experiments to investigate the interaction between human FXN and SOD2 in vitro. Spectroscopic data are combined with rigid body protein-protein docking to assess the potential structure of the FXN-SOD2 complex, which leaves the metal binding region of FXN accessible to the solvent. We provide evidence that human FXN interacts with human SOD2 in vitro and that the complex is in fast exchange. This interaction could be relevant during the assembly of iron-sulfur (FeS) clusters and/or their incorporation in proteins when FeS clusters are potentially susceptible to attacks by reactive oxygen species.

13.
Biochim Biophys Acta Proteins Proteom ; 1867(11): 140254, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31344531

RESUMO

The neurodegenerative disease Friedreich ataxia results from a deficiency of frataxin, a mitochondrial protein. Most patients have a GAA expansion in the first intron of both alleles of frataxin gene, whereas a minority of them are heterozygous for the expansion and contain a mutation in the other allele. Frataxin has been claimed to participate in iron homeostasis and biosynthesis of FeS clusters, however its role in both pathways is not unequivocally defined. In this work we combined different advanced spectroscopic analyses to explore the iron-binding properties of human frataxin, as isolated and at the FeS clusters assembly machinery. For the first time we used EPR spectroscopy to address this key issue providing clear evidence of the formation of a complex with a low symmetry coordination of the metal ion. By 2D NMR, we confirmed that iron can be bound in both oxidation states, a controversial issue, and, in addition, we were able to point out a transient interaction of frataxin with a N-terminal 6his-tagged variant of ISCU, the scaffold protein of the FeS clusters assembly machinery. To obtain insights on structure/function relationships relevant to understand the disease molecular mechanism(s), we extended our studies to four clinical frataxin mutants. All variants showed a moderate to strong impairment in their ability to activate the FeS cluster assembly machinery in vitro, while keeping the same iron-binding features of the wild type protein. This supports the multifunctional nature of frataxin and the complex biochemical consequences of its mutations.


Assuntos
Ataxia de Friedreich , Proteínas de Ligação ao Ferro/química , Ferro/química , Mutação , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Ferro/metabolismo , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Domínios Proteicos , Frataxina
15.
FEBS Open Bio ; 8(3): 390-405, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29511616

RESUMO

Friedreich's ataxia is a disease caused by a decrease in the levels of expression or loss of functionality of the mitochondrial protein frataxin (FXN). The development of an active and stable recombinant variant of FXN is important for protein replacement therapy. Although valuable data about the mature form FXN81-210 has been collected, not enough information is available about the conformation of the frataxin precursor (FXN1-210). We investigated the conformation, stability and function of a recombinant precursor variant (His6-TAT-FXN1-210), which includes a TAT peptide in the N-terminal region to assist with transport across cell membranes. His6-TAT-FXN1-210 was expressed in Escherichia coli and conditions were found for purifying folded protein free of aggregation, oxidation or degradation, even after freezing and thawing. The protein was found to be stable and monomeric, with the N-terminal stretch (residues 1-89) mostly unstructured and the C-terminal domain properly folded. The experimental data suggest a complex picture for the folding process of full-length frataxin in vitro: the presence of the N-terminal region increased the tendency of FXN to aggregate at high temperatures but this could be avoided by the addition of low concentrations of GdmCl. The purified precursor was translocated through cell membranes. In addition, immune response against His6-TAT-FXN1-210 was measured, suggesting that the C-terminal fragment was not immunogenic at the assayed protein concentrations. Finally, the recognition of recombinant FXN by cellular proteins was studied to evaluate its functionality. In this regard, cysteine desulfurase NFS1/ISD11/ISCU was activated in vitro by His6-TAT-FXN1-210. Moreover, the results showed that His6-TAT-FXN1-210 can be ubiquitinated in vitro by the recently identified frataxin E3 ligase RNF126, in a similar way as the FXN1-210, suggesting that the His6-TAT extension does not interfere with the ubiquitination machinery.

16.
Sci Rep ; 7(1): 1714, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28490758

RESUMO

[FeFe]-hydrogenases catalyse the reduction of protons to hydrogen at a complex 2Fe[4Fe4S] center called H-cluster. The assembly of this active site is a multistep process involving three proteins, HydE, HydF and HydG. According to the current models, HydF has the key double role of scaffold, upon which the final H-cluster precursor is assembled, and carrier to transfer it to the target hydrogenase. The X-ray structure of HydF indicates that the protein is a homodimer with both monomers carrying two functional domains: a C-terminal FeS cluster-binding domain, where the precursor is assembled, and a N-terminal GTPase domain, whose exact contribution to cluster biogenesis and hydrogenase activation is still elusive. We previously obtained several hints suggesting that the binding of GTP to HydF could be involved in the interactions of this scaffold protein with the other maturases and with the hydrogenase itself. In this work, by means of site directed spin labeling coupled to EPR/PELDOR spectroscopy, we explored the conformational changes induced in a recombinant HydF protein by GTP binding, and provide the first clue that the HydF GTPase domain could be involved in the H-cluster assembly working as a molecular switch similarly to other known small GTPases.


Assuntos
Proteínas de Bactérias/química , GTP Fosfo-Hidrolases/química , Marcadores de Spin , Sequência de Aminoácidos , Simulação por Computador , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Mutantes/química , Nucleotídeos/metabolismo , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Thermotoga neapolitana
17.
J Phys Chem B ; 119(43): 13680-9, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25978307

RESUMO

The catalytic site of [FeFe]-hydrogenase, the "H-cluster", composed of a [4Fe-4S] unit connected by a cysteinyl residue to a [2Fe] center coordinated by three CO, two CN(-), and a bridging dithiolate, is assembled in a complex maturation pathway, at present not fully characterized, involving three conserved proteins, HydG, HydE, and HydF. HydF is a complex enzyme, which is thought to act as a scaffold and carrier for the [2Fe] subunit of the H-cluster. This maturase protein contains itself a [4Fe-4S] cluster binding site, with three conserved cysteine residues and a noncysteinyl fourth ligand. In this work, we have exploited 3p-ESEEM and HYSCORE spectroscopies to get insight into the structure and the chemical environment of the [4Fe-4S] cluster of HydF from the hyperthermophilic organism Thermotoga neapolitana. The nature of the fourth ligand and the solvent accessibility of the active site comprising the [4Fe-4S] cluster are discussed on the basis of the spectroscopic results obtained upon H/D exchange. We propose that the noncysteinyl ligated Fe atom of the [4Fe-4S] cluster is the site where the [2Fe] subcluster precursor is anchored and finally processed to be delivered to the hydrogenase (HydA).


Assuntos
Hidrogenase/química , Proteínas Ferro-Enxofre/química , Thermotoga neapolitana/enzimologia , Espectroscopia de Ressonância de Spin Eletrônica , Hidrogenase/genética , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Solventes/química
18.
Sci Rep ; 5: 12424, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26215212

RESUMO

The cyanobacterium Synechocystis sp. PCC 6803 has a bidirectional [NiFe]-hydrogenase (Hox hydrogenase) which reversibly reduces protons to H2. This enzyme is composed of a hydrogenase domain and a diaphorase moiety, which is distinctly homologous to the NADH input module of mitochondrial respiratory Complex I. Hox hydrogenase physiological function is still unclear, since it is not required for Synechocystis fitness under standard growth conditions. We analyzed the phenotype under prolonged darkness of three Synechocystis knock-out strains, lacking either Hox hydrogenase (ΔHoxE-H) or one of the proteins responsible for the assembly of its NiFe active site (ΔHypA1 and ΔHypB1). We found that Hox hydrogenase is required for Synechocystis growth under this condition, regardless of the functional status of its catalytic site, suggesting an additional role beside hydrogen metabolism. Moreover, quantitative proteomic analyses revealed that the expression levels of several subunits of the respiratory NADPH/plastoquinone oxidoreductase (NDH-1) are reduced when Synechocystis is grown in the dark. Our findings suggest that the Hox hydrogenase could contribute to electron transport regulation when both photosynthetic and respiratory pathways are down-regulated, and provide a possible explanation for the close evolutionary relationship between mitochondrial respiratory Complex I and cyanobacterial [NiFe]-hydrogenases.


Assuntos
Adaptação à Escuridão , Hidrogenase/metabolismo , Synechocystis/metabolismo , Aerobiose , Synechocystis/crescimento & desenvolvimento
19.
Riv Psichiatr ; 49(1): 34-40, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24572582

RESUMO

BACKGROUND: The purpose of this study was to investigate the risk of death among elderly outpatients (>65 years) with a dementia diagnosis treated with atypical antipsychotics. METHODS: We conducted a cohort study of 696 patients who entered the Unit of Alzheimer Evaluation (UVA) of Teramo Hospital in Central Italy, during a 3-year period (January 2007-December 2009). Among these patients, 375 were treated with atypical antipsychotics (quetiapine, risperidone and olanzapine). Data were collected from record files sent to the pharmaceutical service of the hospital. RESULTS: Patients taking atypical antipsychotic medication were associated with a significantly higher mortality rate than patients not taking antipsychotics. The relative risk of death in patients treated with antipsychotics compared to control patients was 2.354 (95% CI 1.704-3.279). The greatest increases in mortality rate occurred close to the last drug supply, and declined exponentially as time passed from the last drug supply in patients who stopped drug assumption. Quetiapine was the most commonly prescribed drug and higher doses of this drug were associated with higher mortality rates. CONCLUSIONS: These results are in line with the April 2005 warning of the Food and Drug Administration (FDA) that among elderly patients with dementia, the treatment of behavioural disorders with atypical antipsychotics is associated with a higher mortality rate. Given the potential risks of mortality with antipsychotics, and since antipsychotic medications may benefit only a minority of patients, new approaches are clearly needed to manage the neuropsychiatric symptoms of dementia.


Assuntos
Antipsicóticos/uso terapêutico , Benzodiazepinas/uso terapêutico , Demência/tratamento farmacológico , Dibenzotiazepinas/uso terapêutico , Risperidona/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/mortalidade , Antipsicóticos/efeitos adversos , Benzodiazepinas/efeitos adversos , Causalidade , Inibidores da Colinesterase/efeitos adversos , Inibidores da Colinesterase/uso terapêutico , Demência/mortalidade , Dibenzotiazepinas/efeitos adversos , Feminino , Humanos , Itália/epidemiologia , Estimativa de Kaplan-Meier , Masculino , Olanzapina , Pacientes Ambulatoriais/estatística & dados numéricos , Fumarato de Quetiapina , Risco , Risperidona/efeitos adversos
20.
Biochem Biophys Res Commun ; 339(1): 277-83, 2006 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-16297868

RESUMO

Recently, a novel Fe-hydrogenase from a high rate of hydrogen producing Enterobacter cloacae strain IIT-BT08 was identified and partially characterized. This 147 residue protein was found to be much smaller than previously known Fe-hydrogenases, yet retaining a high catalytic activity. We predicted the structure of this protein and found it to be structurally similar to one of the two sub-domains containing the catalytic H-cluster so far jointly present in all other Fe-hydrogenases. This novel architecture allows a tentative explanation of protein function with the high rate of catalytic activity being due to a missing regulatory sub-domain, presumably allowing higher enzymatic activity at the cost of greater exposure to oxygen inactivation. This new insight may improve our understanding of the molecular and functional organization of other, more complex Fe-hydrogenases.


Assuntos
Enterobacter cloacae/enzimologia , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Modelos Moleculares , Sequência de Aminoácidos , Domínio Catalítico , Biologia Computacional , Simulação por Computador , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA