Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Mol Cell ; 83(16): 2991-3009.e13, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37567175

RESUMO

The PIP3/PI3K network is a central regulator of metabolism and is frequently activated in cancer, commonly by loss of the PIP3/PI(3,4)P2 phosphatase, PTEN. Despite huge research investment, the drivers of the PI3K network in normal tissues and how they adapt to overactivation are unclear. We find that in healthy mouse prostate PI3K activity is driven by RTK/IRS signaling and constrained by pathway feedback. In the absence of PTEN, the network is dramatically remodeled. A poorly understood YXXM- and PIP3/PI(3,4)P2-binding PH domain-containing adaptor, PLEKHS1, became the dominant activator and was required to sustain PIP3, AKT phosphorylation, and growth in PTEN-null prostate. This was because PLEKHS1 evaded pathway-feedback and experienced enhanced PI3K- and Src-family kinase-dependent phosphorylation of Y258XXM, eliciting PI3K activation. hPLEKHS1 mRNA and activating Y419 phosphorylation of hSrc correlated with PI3K pathway activity in human prostate cancers. We propose that in PTEN-null cells receptor-independent, Src-dependent tyrosine phosphorylation of PLEKHS1 creates positive feedback that escapes homeostasis, drives PIP3 signaling, and supports tumor progression.


Assuntos
PTEN Fosfo-Hidrolase , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Homeostase , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo
2.
EMBO J ; 41(18): e110038, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35771169

RESUMO

Phosphoinositides (PIPn) in mammalian tissues are enriched in the stearoyl/arachidonoyl acyl chain species ("C38:4"), but its functional significance is unclear. We have used metabolic tracers (isotopologues of inositol, glucose and water) to study PIPn synthesis in cell lines in which this enrichment is preserved to differing relative extents. We show that PIs synthesised from glucose are initially enriched in shorter/more saturated acyl chains, but then rapidly remodelled towards the C38:4 species. PIs are also synthesised by a distinct 're-cycling pathway', which utilises existing precursors and exhibits substantial selectivity for the synthesis of C38:4-PA and -PI. This re-cycling pathway is rapidly stimulated during receptor activation of phospholipase-C, both allowing the retention of the C38:4 backbone and the close coupling of PIPn consumption to its resynthesis, thus maintaining pool sizes. These results suggest that one property of the specific acyl chain composition of PIPn is that of a molecular code, to facilitate 'metabolic channelling' from PIP2 to PI via pools of intermediates (DG, PA and CDP-DG) common to other lipid metabolic pathways.


Assuntos
Lipogênese , Fosfatidilinositóis , Animais , Glucose , Mamíferos , Fosfatidilinositóis/metabolismo
3.
Mol Cell ; 68(3): 566-580.e10, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29056325

RESUMO

The PI3K signaling pathway regulates cell growth and movement and is heavily mutated in cancer. Class I PI3Ks synthesize the lipid messenger PI(3,4,5)P3. PI(3,4,5)P3 can be dephosphorylated by 3- or 5-phosphatases, the latter producing PI(3,4)P2. The PTEN tumor suppressor is thought to function primarily as a PI(3,4,5)P3 3-phosphatase, limiting activation of this pathway. Here we show that PTEN also functions as a PI(3,4)P2 3-phosphatase, both in vitro and in vivo. PTEN is a major PI(3,4)P2 phosphatase in Mcf10a cytosol, and loss of PTEN and INPP4B, a known PI(3,4)P2 4-phosphatase, leads to synergistic accumulation of PI(3,4)P2, which correlated with increased invadopodia in epidermal growth factor (EGF)-stimulated cells. PTEN deletion increased PI(3,4)P2 levels in a mouse model of prostate cancer, and it inversely correlated with PI(3,4)P2 levels across several EGF-stimulated prostate and breast cancer lines. These results point to a role for PI(3,4)P2 in the phenotype caused by loss-of-function mutations or deletions in PTEN.


Assuntos
Neoplasias da Mama/enzimologia , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositóis/metabolismo , Neoplasias da Próstata/enzimologia , Sistemas do Segundo Mensageiro , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/farmacologia , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Fenótipo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Fatores de Tempo
4.
Bioorg Med Chem ; 54: 116557, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34922306

RESUMO

Phosphatidyl inositol (4,5)-bisphosphate (PI(4,5)P2) plays several key roles in human biology and the lipid kinase that produces PI(4,5)P2, PIP5K, has been hypothesized to provide a potential therapeutic target of interest in the treatment of cancers. To better understand and explore the role of PIP5K in human cancers there remains an urgent need for potent and specific PIP5K inhibitor molecules. Following a high throughput screen of the AstraZeneca collection, a novel, moderately potent and selective inhibitor of PIP5K, 1, was discovered. Detailed exploration of the SAR for this novel scaffold resulted in the considerable optimization of both potency for PIP5K, and selectivity over the closely related kinase PI3Kα, as well as identifying several opportunities for the continued optimization of drug-like properties. As a result, several high quality in vitro tool compounds were identified (8, 20 and 25) that demonstrate the desired biochemical and cellular profiles required to aid better understanding of this complex area of biology.


Assuntos
Amidas/farmacologia , Inibidores Enzimáticos/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Amidas/química , Amidas/metabolismo , Animais , Células CACO-2 , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ratos , Relação Estrutura-Atividade
5.
Nature ; 534(7606): 272-6, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27279227

RESUMO

Precision medicines exert selective pressure on tumour cells that leads to the preferential growth of resistant subpopulations, necessitating the development of next-generation therapies to treat the evolving cancer. The PIK3CA-AKT-mTOR pathway is one of the most commonly activated pathways in human cancers, which has led to the development of small-molecule inhibitors that target various nodes in the pathway. Among these agents, first-generation mTOR inhibitors (rapalogs) have caused responses in 'N-of-1' cases, and second-generation mTOR kinase inhibitors (TORKi) are currently in clinical trials. Here we sought to delineate the likely resistance mechanisms to existing mTOR inhibitors in human cell lines, as a guide for next-generation therapies. The mechanism of resistance to the TORKi was unusual in that intrinsic kinase activity of mTOR was increased, rather than a direct active-site mutation interfering with drug binding. Indeed, identical drug-resistant mutations have been also identified in drug-naive patients, suggesting that tumours with activating MTOR mutations will be intrinsically resistant to second-generation mTOR inhibitors. We report the development of a new class of mTOR inhibitors that overcomes resistance to existing first- and second-generation inhibitors. The third-generation mTOR inhibitor exploits the unique juxtaposition of two drug-binding pockets to create a bivalent interaction that allows inhibition of these resistant mutants.


Assuntos
Resistência a Medicamentos/efeitos dos fármacos , Resistência a Medicamentos/genética , Mutação/genética , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Animais , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Mutação/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Inibidores de Proteínas Quinases/classificação , Estrutura Terciária de Proteína/genética , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/química , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Breast Cancer Res ; 22(1): 14, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005287

RESUMO

After publication of the original article [1], we were notified that an author's surname has been erroneously spelled. Elisabetta Maragoni's family name should be replaced with Marangoni.

7.
Breast Cancer Res ; 21(1): 135, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31801615

RESUMO

BACKGROUND: Endocrine therapies are still the main strategy for the treatment of oestrogen receptor-positive (ER+) breast cancers (BC), but resistance remains problematic. Cross-talk between ER and PI3K/AKT/mTORC has been associated with ligand-independent transcription of ER. We have previously reported the anti-proliferative effects of the combination of everolimus (an mTORC1 inhibitor) with endocrine therapy in resistance models, but potential routes of escape via AKT signalling can lead to resistance; therefore, the use of dual mTORC1/2 inhibitors has met with significant interest. METHODS: To address this, we tested the effect of vistusertib, a dual mTORC1 and mTORC2 inhibitor, in a panel of endocrine-resistant and endocrine-sensitive ER+ BC cell lines, with varying PTEN, PIK3CA and ESR1 mutation status. End-points included proliferation, cell signalling, cell cycle and effect on ER-mediated transcription. Two patient-derived xenografts (PDX) modelling endocrine resistance were used to assess the efficacy of vistusertib, fulvestrant or the combination on tumour progression, and biomarker studies were conducted using immunohistochemistry and RNA-seq technologies. RESULTS: Vistusertib caused a dose-dependent decrease in proliferation of all the cell lines tested and reduced abundance of mTORC1, mTORC2 and cell cycle markers, but caused an increase in abundance of EGFR, IGF1R and ERBB3 in a context-dependent manner. ER-mediated transcription showed minimal effect of vistusertib. Combined therapy of vistusertib with fulvestrant showed synergy in two ER+ PDX models of resistance to endocrine therapy and delayed tumour progression after cessation of therapy. CONCLUSIONS: These data support the notion that models of acquired endocrine resistance may have a different sensitivity to mTOR inhibitor/endocrine therapy combinations.

8.
Biochem Soc Trans ; 47(5): 1291-1305, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31657437

RESUMO

The phosphoinositide (PIPn) family of signalling phospholipids are central regulators in membrane cell biology. Their varied functions are based on the phosphorylation pattern of their inositol ring, which can be recognized by selective binding domains in their effector proteins and be modified by a series of specific PIPn kinases and phosphatases, which control their interconversion in a spatial and temporal manner. Yet, a unique feature of PIPns remains largely unexplored: their unusually uniform acyl chain composition. Indeed, while most phospholipids present a range of molecular species comprising acyl chains of diverse length and saturation, PIPns in several organisms and tissues show the predominance of a single hydrophobic backbone, which in mammals is composed of arachidonoyl and stearoyl chains. Despite evolution having favoured this specific PIPn configuration, little is known regarding the mechanisms and functions behind it. In this review, we explore the metabolic pathways that could control the acyl chain composition of PIPns as well as the potential roles of this selective enrichment. While our understanding of this phenomenon has been constrained largely by the technical limitations in the methods traditionally employed in the PIPn field, we believe that the latest developments in PIPn analysis should shed light onto this old question.


Assuntos
Fosfatidilinositóis/metabolismo , 1-Fosfatidilinositol 4-Quinase/metabolismo , Animais , Sítios de Ligação , Transdução de Sinais
9.
PLoS Genet ; 11(7): e1005304, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26132308

RESUMO

The organismal roles of the ubiquitously expressed class I PI3K isoform p110ß remain largely unknown. Using a new kinase-dead knockin mouse model that mimics constitutive pharmacological inactivation of p110ß, we document that full inactivation of p110ß leads to embryonic lethality in a substantial fraction of mice. Interestingly, the homozygous p110ß kinase-dead mice that survive into adulthood (maximum ~26% on a mixed genetic background) have no apparent phenotypes, other than subfertility in females and complete infertility in males. Systemic inhibition of p110ß results in a highly specific blockade in the maturation of spermatogonia to spermatocytes. p110ß was previously suggested to signal downstream of the c-kit tyrosine kinase receptor in germ cells to regulate their proliferation and survival. We now report that p110ß also plays a germ cell-extrinsic role in the Sertoli cells (SCs) that support the developing sperm, with p110ß inactivation dampening expression of the SC-specific Androgen Receptor (AR) target gene Rhox5, a homeobox gene critical for spermatogenesis. All extragonadal androgen-dependent functions remain unaffected by global p110ß inactivation. In line with a crucial role for p110ß in SCs, selective inactivation of p110ß in these cells results in male infertility. Our study is the first documentation of the involvement of a signalling enzyme, PI3K, in the regulation of AR activity during spermatogenesis. This developmental pathway may become active in prostate cancer where p110ß and AR have previously been reported to functionally interact.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Fertilidade/fisiologia , Infertilidade Masculina/genética , Receptores Androgênicos/metabolismo , Células de Sertoli/metabolismo , Animais , Blastocisto/citologia , Células Cultivadas , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/genética , Feminino , Proteínas de Homeodomínio/genética , Infertilidade Feminina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mórula/citologia , Receptores Androgênicos/genética , Transdução de Sinais/genética , Espermatogênese/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética
10.
Bioorg Med Chem Lett ; 27(13): 3030-3035, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28526367

RESUMO

We report the discovery of a novel aminopyrazine series of PI3Kα inhibitors, designed by hybridizing two known scaffolds of PI3K inhibitors. We describe the progress achieved from the first compounds plagued with poor general kinase selectivity to compounds showing high selectivity for PI3Kα over PI3Kß and excellent general kinase selectivity. This effort culminated with the identification of compound 5 displaying high potency and selectivity, and suitable physiochemical and pharmacokinetic properties for oral administration. In vivo, compound 5 showed good inhibition of tumour growth (86% tumour growth inhibition at 50mg/kg twice daily orally) in the MCF7 xenograft model in mice.


Assuntos
Descoberta de Drogas , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Pirazinas/farmacologia , Classe I de Fosfatidilinositol 3-Quinases , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirazinas/síntese química , Pirazinas/química , Relação Estrutura-Atividade
11.
Bioorg Med Chem Lett ; 27(9): 1949-1954, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28347666

RESUMO

Attempts to lock the active conformation of compound 4, a PI3Kß/δ inhibitor (PI3Kß cell IC50 0.015µM), led to the discovery of a series of 8-(1-phenylpyrrolidin-2-yl)-6-carboxamide-2-morpholino-4H-chromen-4-ones, which showed high levels of potency and selectivity as PI3Kß/δ inhibitors. Compound 10 proved exquisitely potent and selective: PI3Kß cell IC50 0.0011µM in PTEN null MDA-MB-468 cell and PI3Kδ cell IC50 0.014µM in Jeko-1 B-cell, and exhibited suitable physical properties for oral administration. In vivo, compound 10 showed profound pharmacodynamic modulation of AKT phosphorylation in a mouse PTEN-null PC3 prostate tumour xenograft after a single oral dose and gave excellent tumour growth inhibition in the same model after chronic oral dosing. Based on these results, compound 10 was selected as one of our PI3Kß/δ preclinical candidates.


Assuntos
Antineoplásicos/química , Antineoplásicos/uso terapêutico , Benzopiranos/química , Benzopiranos/uso terapêutico , PTEN Fosfo-Hidrolase/genética , Inibidores de Fosfoinositídeo-3 Quinase , Neoplasias da Próstata/tratamento farmacológico , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Benzopiranos/farmacocinética , Benzopiranos/farmacologia , Linhagem Celular Tumoral , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Cães , Deleção de Genes , Humanos , Masculino , Camundongos Nus , Simulação de Acoplamento Molecular , Morfolinos/química , Morfolinos/farmacocinética , Morfolinos/farmacologia , Morfolinos/uso terapêutico , Próstata/efeitos dos fármacos , Próstata/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
12.
Bioorg Med Chem Lett ; 26(9): 2318-23, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26996374

RESUMO

We report the discovery and optimisation of a series of 8-(2,3-dihydro-1,4-benzoxazin-4-ylmethyl)-2-morpholino-4-oxo-chromene-6-carboxamides, leading to compound 16 as a potent and selective PI3Kß/δ inhibitor: PI3Kß cell IC50 0.012 µM (in PTEN null MDA-MB-468 cell) and PI3Kδ cell IC50 0.047 µM (in Jeko-1 B-cell), with good pharmacokinetics and physical properties. In vivo, 16 showed profound pharmacodynamic modulation of AKT phosphorylation in a mouse PTEN-deficient PC3 prostate tumour xenograft after a single oral dose and gave excellent tumour growth inhibition in the same model after chronic oral dosing. Compound 16 was selected as a preclinical candidate for the treatment of PTEN-deficient tumours.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Isoenzimas/antagonistas & inibidores , Morfolinos/química , Morfolinos/farmacologia , PTEN Fosfo-Hidrolase/genética , Inibidores de Fosfoinositídeo-3 Quinase , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Fosforilação
13.
Bioorg Med Chem Lett ; 25(13): 2679-85, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25980912

RESUMO

Starting from compound 1, a potent PI3Kα inhibitor having poor general kinase selectivity, we used structural data and modelling to identify key exploitable differences between PI3Kα and the other kinases. This approach led us to design chemical modifications of the central pyrazole, which solved the poor kinase selectivity seen as a strong liability for the initial compound 1. Amongst the modifications explored, a 1,3,4-triazole ring (as in compound 4) as a replacement of the initial pyrazole provided good potency against PI3Kα, with excellent kinase selectivity.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Sequência de Aminoácidos , Sítios de Ligação , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/química , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Humanos , Modelos Moleculares , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/química , Proteínas Mutantes/genética , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/genética , Pirazóis/síntese química , Pirazóis/química , Pirazóis/farmacologia , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química , Triazóis/farmacologia
14.
Bioorg Med Chem Lett ; 25(22): 5155-62, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26475521

RESUMO

Starting from potent inhibitors of PI3Kα having poor general kinase selectivity (e.g., 1 and 2), optimisation of this series led to the identification of 25, a potent inhibitor of PI3Kα (wild type, E545K and H1047R mutations) and PI3Kδ, selective versus PI3Kß and PI3Kγ, with excellent general kinase selectivity. Compound 25 displayed low metabolic turnover and suitable physical properties for oral administration. In vivo, compound 25 showed pharmacodynamic modulation of AKT phosphorylation and near complete inhibition of tumour growth (93% tumour growth inhibition) in a murine H1047R PI3Kα mutated SKOV-3 xenograft tumour model after chronic oral administration at 25mg/kg b.i.d. Compound 25, also known as AZD8835, is currently in phase I clinical trials.


Assuntos
Antineoplásicos/farmacologia , Oxidiazóis/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Cães , Humanos , Camundongos , Camundongos Nus , Camundongos SCID , Simulação de Acoplamento Molecular , Oxidiazóis/síntese química , Piperidinas/síntese química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacocinética , Ratos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Bioorg Med Chem Lett ; 24(16): 3928-35, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24992874

RESUMO

Starting from TGX-221, we designed a series of 9-(1-anilinoethyl)-2-morpholino-4-oxo-pyrido[1,2-a]pyrimidine-7-carboxamides as potent and selective PI3Kß/δ inhibitors. Structure-activity relationships and structure-property relationships around the aniline and the amide substituents are discussed. We identified compounds 17 and 18, which showed profound pharmacodynamic modulation of phosphorylated Akt in the PC3 prostate tumour xenograft, after a single oral dose. Compound 17 also gave significant inhibition of tumour growth in the PC3 prostate tumour xenograft model after chronic oral dosing.


Assuntos
Amidas/farmacologia , Antineoplásicos/farmacologia , Descoberta de Drogas , Neoplasias Experimentais/tratamento farmacológico , PTEN Fosfo-Hidrolase/deficiência , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Administração Oral , Amidas/administração & dosagem , Amidas/química , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Estrutura Molecular , Neoplasias Experimentais/enzimologia , Neoplasias Experimentais/patologia , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
16.
Clin Cancer Res ; 30(7): 1338-1351, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37967136

RESUMO

PURPOSE: We evaluated the properties and activity of AZD9574, a blood-brain barrier (BBB) penetrant selective inhibitor of PARP1, and assessed its efficacy and safety alone and in combination with temozolomide (TMZ) in preclinical models. EXPERIMENTAL DESIGN: AZD9574 was interrogated in vitro for selectivity, PARylation inhibition, PARP-DNA trapping, the ability to cross the BBB, and the potential to inhibit cancer cell proliferation. In vivo efficacy was determined using subcutaneous as well as intracranial mouse xenograft models. Mouse, rat, and monkey were used to assess AZD9574 BBB penetration and rat models were used to evaluate potential hematotoxicity for AZD9574 monotherapy and the TMZ combination. RESULTS: AZD9574 demonstrated PARP1-selectivity in fluorescence anisotropy, PARylation, and PARP-DNA trapping assays and in vivo experiments demonstrated BBB penetration. AZD9574 showed potent single agent efficacy in preclinical models with homologous recombination repair deficiency in vitro and in vivo. In an O6-methylguanine-DNA methyltransferase (MGMT)-methylated orthotopic glioma model, AZD9574 in combination with TMZ was superior in extending the survival of tumor-bearing mice compared with TMZ alone. CONCLUSIONS: The combination of three key features-PARP1 selectivity, PARP1 trapping profile, and high central nervous system penetration in a single molecule-supports the development of AZD9574 as the best-in-class PARP inhibitor for the treatment of primary and secondary brain tumors. As documented by in vitro and in vivo studies, AZD9574 shows robust anticancer efficacy as a single agent as well as in combination with TMZ. AZD9574 is currently in a phase I trial (NCT05417594). See related commentary by Lynce and Lin, p. 1217.


Assuntos
Neoplasias Encefálicas , Glioma , Animais , Humanos , Camundongos , Ratos , Antineoplásicos Alquilantes/farmacologia , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , DNA , Glioma/tratamento farmacológico , Glioma/patologia , O(6)-Metilguanina-DNA Metiltransferase/genética , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Biochem J ; 444(1): 141-51, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22428559

RESUMO

mTORC1 [mTOR (mammalian target of rapamycin) complex 1] regulates diverse cell functions. mTORC1 controls the phosphorylation of several proteins involved in mRNA translation and the translation of specific mRNAs, including those containing a 5'-TOP (5'-terminal oligopyrimidine). To date, most of the proteins encoded by known 5'-TOP mRNAs are proteins involved in mRNA translation, such as ribosomal proteins and elongation factors. Rapamycin inhibits some mTORC1 functions, whereas mTOR-KIs (mTOR kinase inhibitors) interfere with all of them. mTOR-KIs inhibit overall protein synthesis more strongly than rapamycin. To study the effects of rapamycin or mTOR-KIs on synthesis of specific proteins, we applied pSILAC [pulsed SILAC (stable isotope-labelling with amino acids in cell culture)]. Our results reveal, first, that mTOR-KIs and rapamycin differentially affect the synthesis of many proteins. Secondly, mTOR-KIs inhibit the synthesis of proteins encoded by 5'-TOP mRNAs much more strongly than rapamycin does, revealing that these mRNAs are controlled by rapamycin-insensitive outputs from mTOR. Thirdly, the synthesis of certain other proteins shows a similar pattern of inhibition. Some of them appear to be encoded by 'novel' 5'-TOP mRNAs; they include proteins which, like known 5'-TOP mRNA-encoded proteins, are involved in protein synthesis, whereas others are enzymes involved in intermediary or anabolic metabolism. These results indicate that mTOR signalling may promote diverse biosynthetic processes through the translational up-regulation of specific mRNAs. Lastly, a SILAC-based approach revealed that, although rapamycin and mTOR-KIs have little effect on general protein stability, they stabilize proteins encoded by 5'-TOP mRNAs.


Assuntos
Biossíntese de Proteínas/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Isótopos de Carbono , Fator de Iniciação 4E em Eucariotos/metabolismo , Células HeLa , Humanos , Indóis/farmacologia , Marcação por Isótopo , Morfolinas/farmacologia , Isótopos de Nitrogênio , Biossíntese de Proteínas/genética , Purinas/farmacologia , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Sirolimo/farmacologia
18.
J Med Chem ; 66(13): 9147-9160, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37395055

RESUMO

The glycine to cysteine mutation at codon 12 of Kirsten rat sarcoma (KRAS) represents an Achilles heel that has now rendered this important GTPase druggable. Herein, we report our structure-based drug design approach that led to the identification of 14, AZD4747, a clinical development candidate for the treatment of KRASG12C-positive tumors, including the treatment of central nervous system (CNS) metastases. Building on our earlier discovery of C5-tethered quinazoline AZD4625, excision of a usually critical pyrimidine ring yielded a weak but brain-penetrant start point which was optimized for potency and DMPK. Key design principles and measured parameters that give high confidence in CNS exposure are discussed. During optimization, divergence between rodent and non-rodent species was observed in CNS exposure, with primate PET studies ultimately giving high confidence in the expected translation to patients. AZD4747 is a highly potent and selective inhibitor of KRASG12C with an anticipated low clearance and high oral bioavailability profile in humans.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Neoplasias , Animais , Humanos , Antineoplásicos/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias/tratamento farmacológico , Desenho de Fármacos , Glicina/uso terapêutico , Mutação , Neoplasias Pulmonares/tratamento farmacológico
19.
Clin Cancer Res ; 28(21): 4724-4736, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35929986

RESUMO

PURPOSE: We hypothesized that inhibition and trapping of PARP1 alone would be sufficient to achieve antitumor activity. In particular, we aimed to achieve selectivity over PARP2, which has been shown to play a role in the survival of hematopoietic/stem progenitor cells in animal models. We developed AZD5305 with the aim of achieving improved clinical efficacy and wider therapeutic window. This next-generation PARP inhibitor (PARPi) could provide a paradigm shift in clinical outcomes achieved by first-generation PARPi, particularly in combination. EXPERIMENTAL DESIGN: AZD5305 was tested in vitro for PARylation inhibition, PARP-DNA trapping, and antiproliferative abilities. In vivo efficacy was determined in mouse xenograft and PDX models. The potential for hematologic toxicity was evaluated in rat models, as monotherapy and combination. RESULTS: AZD5305 is a highly potent and selective inhibitor of PARP1 with 500-fold selectivity for PARP1 over PARP2. AZD5305 inhibits growth in cells with deficiencies in DNA repair, with minimal/no effects in other cells. Unlike first-generation PARPi, AZD5305 has minimal effects on hematologic parameters in a rat pre-clinical model at predicted clinically efficacious exposures. Animal models treated with AZD5305 at doses ≥0.1 mg/kg once daily achieved greater depth of tumor regression compared to olaparib 100 mg/kg once daily, and longer duration of response. CONCLUSIONS: AZD5305 potently and selectively inhibits PARP1 resulting in excellent antiproliferative activity and unprecedented selectivity for DNA repair deficient versus proficient cells. These data confirm the hypothesis that targeting only PARP1 can retain the therapeutic benefit of nonselective PARPi, while reducing potential for hematotoxicity. AZD5305 is currently in phase I trials (NCT04644068).


Assuntos
Antineoplásicos , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Camundongos , Ratos , Animais , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Ftalazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1 , Antineoplásicos/farmacologia , Reparo do DNA
20.
Mol Cancer Ther ; 21(10): 1535-1546, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-35930755

RESUMO

AZD4625 is a potent, selective, and orally bioavailable inhibitor of oncogenic KRASG12C as demonstrated in cellular assays and in vivo in preclinical cell line-derived and patient-derived xenograft models. In vitro and cellular assays have shown selective binding and inhibition of the KRASG12C mutant isoform, which carries a glycine to cysteine mutation at residue 12, with no binding and inhibition of wild-type RAS or isoforms carrying non-KRASG12C mutations. The pharmacology of AZD4625 shows that it has the potential to provide therapeutic benefit to patients with KRASG12C mutant cancer as either a monotherapy treatment or in combination with other targeted drug agents.


Assuntos
Antineoplásicos , Cisteína , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Glicina/farmacologia , Humanos , Mutação , Isoformas de Proteínas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA