Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EFSA J ; 22(1): e8528, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38205503

RESUMO

This statement provides scientific guidance on the information needed to support the risk assessment of the detoxification processes applied to products intended for animal feed in line with the acceptability criteria of the Commission Regulation (EU) 2015/786.

2.
Toxicol Appl Pharmacol ; 270(3): 209-17, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21095201

RESUMO

Nitrite is widely consumed from the diet by animals and humans. However the largest contribution to exposure results from the in vivo conversion of exogenously derived nitrate to nitrite. Because of its potential to cause to methaemoglobin (MetHb) formation at excessive levels of intake, nitrite is regulated in feed and water as an undesirable substance. Forages and contaminated water have been shown to contain high levels of nitrate and represent the largest contributor to nitrite exposure for food-producing animals. Interspecies differences in sensitivity to nitrite intoxication principally result from physiological and anatomical differences in nitrite handling. In the case of livestock both pigs and cattle are relatively susceptible. With pigs this is due to a combination of low levels of bacterial nitrite reductase and hence potential to reduce nitrite to ammonia as well as reduced capacity to detoxify MetHb back to haemoglobin (Hb) due to intrinsically low levels of MetHb reductase. In cattle the sensitivity is due to the potential for high dietary intake and high levels of rumen conversion of nitrate to nitrite, and an adaptable gut flora which at normal loadings shunts nitrite to ammonia for biosynthesis. However when this escape mechanism gets overloaded, nitrite builds up and can enter the blood stream resulting in methemoglobinemia. Looking at livestock case histories reported in the literature no-observed-effect levels of 3.3mg/kg body weight (b.w.) per day for nitrite in pigs and cattle were estimated and related to the total daily nitrite intake that would result from complete feed at the EU maximum permissible level. This resulted in margins of safety of 9-fold and 5-fold for pigs and cattle, respectively. Recognising that the bulkiness of animal feed limits their consumption, these margins in conjunction with good agricultural practise were considered satisfactory for the protection of livestock health. A human health risk assessment was also carried out taking into account all direct and indirect sources of nitrite from the human diet, including carry-over of nitrite in animal-based products such as milk, eggs and meat products. Human exposure was then compared with the acceptable daily intake (ADI) for nitrite of 0-0.07 mg/kg b.w. per day. Overall, the low levels of nitrite in fresh animal products represented only 2.9% of the total daily dietary exposure and thus were not considered to raise concerns for human health. It is concluded that the potential health risk to animals from the consumption of feed or to man from eating fresh animal products containing nitrite, is very low.


Assuntos
Ração Animal/análise , Cadeia Alimentar , Contaminação de Alimentos/análise , Nível de Saúde , Nitritos/análise , Ração Animal/efeitos adversos , Animais , Humanos , Produtos da Carne/efeitos adversos , Produtos da Carne/análise , Nitritos/efeitos adversos
3.
EFSA J ; 20(9): e07524, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36177388

RESUMO

Following a request from the European Commission, the EFSA Panel on Contaminants in the Food Chain (CONTAM) assessed a decontamination process of fish oils and vegetable oils and fats to reduce the concentrations of dioxins (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans, abbreviated together as PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) by adsorption to activated carbon. All feed decontamination processes must comply with the acceptability criteria specified in the Commission Regulation (EU) 2015/786. Data provided by the feed food business operator (FBO) were assessed for the efficacy of the process and to demonstrate that the process did not adversely affect the characteristics and properties of the product. The limited information provided, in particular on the analysis of the samples before and after decontamination, did not allow the CONTAM Panel to conclude whether or not the proposed decontamination process is effective in reducing PCDD/Fs and DL-PCBs in the fish- and vegetable oils and fats. Although there is no evidence from the data provided that the decontamination process leads to detrimental changes in the nutritional composition of the fish- and vegetable oils, it is possible that the process could deplete some beneficial constituents (e.g. vitamins). Taken together, it was not possible for the CONTAM Panel to conclude that the decontamination process as proposed by the FBO is compliant with the acceptability criteria provided for in Commission Regulation (EU) 2015/786 of 19 May 2015.

4.
EFSA J ; 19(12): e07035, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34976165

RESUMO

Following a request from the European Commission, the EFSA Panel on Contaminants in the Food Chain (CONTAM) provided a scientific opinion on an application for a detoxification process of groundnut press cake for aflatoxins by ammoniation. Specifically, it is required that the feed decontamination process is compliant with the acceptability criteria specified in the Commission Regulation (EU) 2015/786 of 19 May 2015. The CONTAM Panel assessed the data provided by the feed business operator with respect to the efficacy of the process to remove the contaminant from groundnut press cake batches and on information demonstrating that the process does not adversely affect the characteristics and the nature of the product. Although according to the literature the process may be able to reduce aflatoxin levels below the legal limits, the Panel concluded that the proposed decontamination process, on the basis of the experimental data submitted by the feed business operator, cannot be confirmed for compliance with the acceptability criteria provided for in Commission Regulation (EU) 2015/786 of 19 May 2015. The Panel recommended sufficient sample testing before and after the process, under the selected conditions, to ensure that the process is reproducible and reliable and to demonstrate that the detoxification is not reversible. In addition, genotoxicity testing of extracts of the treated feedingstuff and of the identified degradation products would be necessary. Finally, information on the transfer rate of AFB1 to AFM1 excretion in milk for animals fed the ammoniated product, in comparison to the starting material and on the ammoniation process changes of the nutritional values of the feed material should be provided.

5.
EFSA J ; 18(8): e06222, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32788943

RESUMO

The European Commission asked EFSA for a scientific opinion on the risks for animal and human health related to the presence of glycoalkaloids (GAs) in feed and food. This risk assessment covers edible parts of potato plants and other food plants containing GAs, in particular, tomato and aubergine. In humans, acute toxic effects of potato GAs (α-solanine and α-chaconine) include gastrointestinal symptoms such as nausea, vomiting and diarrhoea. For these effects, the CONTAM Panel identified a lowest-observed-adverse-effect level of 1 mg total potato GAs/kg body weight (bw) per day as a reference point for the risk characterisation following acute exposure. In humans, no evidence of health problems associated with repeated or long-term intake of GAs via potatoes has been identified. No reference point for chronic exposure could be identified from the experimental animal studies. Occurrence data were available only for α-solanine and α-chaconine, mostly for potatoes. The acute dietary exposure to potato GAs was estimated using a probabilistic approach and applying processing factors for food. Due to the limited data available, a margin of exposure (MOE) approach was applied. The MOEs for the younger age groups indicate a health concern for the food consumption surveys with the highest mean exposure, as well as for the P95 exposure in all surveys. For adult age groups, the MOEs indicate a health concern only for the food consumption surveys with the highest P95 exposures. For tomato and aubergine GAs, the risk to human health could not be characterised due to the lack of occurrence data and the limited toxicity data. For horses, farm and companion animals, no risk characterisation for potato GAs could be performed due to insufficient data on occurrence in feed and on potential adverse effects of GAs in these species.

6.
EFSA J ; 18(11): e06290, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33173543

RESUMO

The European Commission asked EFSA for a scientific opinion on the risks to animal health related to nitrite and nitrate in feed. For nitrate ion, the EFSA Panel on Contaminants in the Food Chain (CONTAM Panel) identified a BMDL 10 of 64 mg nitrate/kg body weight (bw) per day for adult cattle, based on methaemoglobin (MetHb) levels in animal's blood that would not induce clinical signs of hypoxia. The BMDL 10 is applicable to all bovines, except for pregnant cows in which reproductive effects were not clearly associated with MetHb formation. Since the data available suggested that ovines and caprines are not more sensitive than bovines, the BMDL 10 could also be applied to these species. Highest mean exposure estimates of 53 and 60 mg nitrate/kg bw per day in grass silage-based diets for beef cattle and fattening goats, respectively, may raise a health concern for ruminants when compared with the BMDL 10 of 64 mg nitrate/kg bw per day. The concern may be higher because other forages might contain higher levels of nitrate. Highest mean exposure estimates of 2.0 mg nitrate/kg bw per day in pigs' feeds indicate a low risk for adverse health effects, when compared with an identified no observed adverse effect level (NOAEL) of 410 mg nitrate/kg bw per day, although the levels of exposure might be underestimated due to the absence of data on certain key ingredients in the diets of this species. Due to the limitations of the data available, the CONTAM Panel could not characterise the health risk in species other than ruminants and pigs from nitrate and in all livestock and companion animals from nitrite. Based on a limited data set, both the transfer of nitrate and nitrite from feed to food products of animal origin and the nitrate- and nitrite-mediated formation of N-nitrosamines and their transfer into these products are likely to be negligible.

7.
EFSA J ; 17(11): e05896, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32626181

RESUMO

At EFSA, animal dietary exposure estimates are undertaken by several Panels/Units to assess the risk of feed contaminants, pesticide residues, genetically modified feed and feed additives. Guidance documents describing methodologies for animal dietary exposure assessment are available both at EFSA and international levels. Although appropriate within pertinent regulatory frameworks, the methodologies used to assess animal dietary exposure vary across risk assessment areas. There are different approaches ranging from quick worst-case estimations to more refined methods assessing actual exposure, resulting from the use of a heterogeneous selection of animal populations and default values to estimate feed intake. Furthermore, current feed classification systems in place at international and national levels contain a large and heterogeneous number of feed materials, which may benefit from further harmonisation efforts. This technical report presents an overview of the current approaches in place at EFSA to assess the exposure to chemicals in feed. The possibility for a greater harmonisation of feed classification and terminology is also addressed by comparing the structure of the EU catalogue of feed materials and the Harmonised OECD tables of feedstuffs derived from field crops with the EFSA FoodEx2 system.

8.
EFSA J ; 17(11): e05860, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32626161

RESUMO

The European Commission asked EFSA for a scientific opinion on the risks for animal and human health related to the presence of quinolizidine alkaloids (QAs) in feed and food. This risk assessment is limited to QAs occurring in Lupinus species/varieties relevant for animal and human consumption in Europe (i.e. Lupinus albus L., Lupinus angustifolius L., Lupinus luteus L. and Lupinus mutabilis Sweet). Information on the toxicity of QAs in animals and humans is limited. Following acute exposure to sparteine (reference compound), anticholinergic effects and changes in cardiac electric conductivity are considered to be critical for human hazard characterisation. The CONTAM Panel used a margin of exposure (MOE) approach identifying a lowest single oral effective dose of 0.16 mg sparteine/kg body weight as reference point to characterise the risk following acute exposure. No reference point could be identified to characterise the risk of chronic exposure. Because of similar modes of action for QAs, the CONTAM Panel used a group approach assuming dose additivity. For food, the highest mean concentration of Total QAs (TotQAs) (i.e. the 6 most abundant QAs) was found in lupin seed samples classified as 'Lupins (dry) and similar-'. Due to the limited data on occurrence and consumption, dietary exposure was calculated for some specific scenarios and no full human health risk characterisation was possible. The calculated margin of exposures (MOEs) may indicate a risk for some consumers. For example, when lupin seeds are consumed without a debittering step, or as debittered lupin seeds high in QA content and when 'lupin-based meat imitates' are consumed. For horses, companion and farm animals, other than salmonids, the available database on adverse effects was too limited to identify no-observed-adverse-effect levels and/or lowest-observed-adverse-effect levels and no risk characterisation was possible. For salmonids, the CONTAM Panel considers the risk for adverse effects to be low.

9.
EFSA J ; 16(1): e05083, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32625654

RESUMO

The CONTAM Panel updated the assessment of the risks for human health related to the presence of 3-monochloropropane diol (3-MCPD) and its fatty acid esters in food published in 2016 in view of the scientific divergence identified in the establishment of the tolerable daily intake (TDI) in the Joint FAO/WHO Expert Committee on Food Additives and Contaminants (FAO/WHO) report published in 2017. In this update, dose-response analysis was performed following the recent EFSA Scientific Committee guidance on the use of benchmark dose (BMD) approach in risk assessment, and a review of available data on developmental and reproduction toxicity was included. The outcome of this review indicates that in rats short-term exposure to 3-MCPD above 1 mg/kg body weight (bw) per day can induce reduced sperm motility associated with reduced male fecundity. Decreased sperm count and histopathological changes in the testis and epididymis were observed following longer treatment periods at higher doses. Regarding increased incidence kidney tubular hyperplasia, BMD analysis using model averaging resulted in a BMDL 10 of 0.20 mg/kg bw per day in male rats, which was selected as the new Reference Point (RP) for renal effects. For the effects on male fertility, decreased sperm motility was selected as the most sensitive relevant endpoint and a BMDL 05 of 0.44 mg/kg bw per day was calculated. The RP for renal effects was considered to derive an updated group TDI of 2 µg/kg bw per day for 3-MCPD and its fatty acid esters and was considered protective also for effects on male fertility. The established TDI of 2 µg/kg bw per day is not exceeded in the adult population. A slight exceedance of the TDI was observed in the high consumers of the younger age groups and in particular for the scenarios on infants receiving formula only.

10.
EFSA J ; 16(12): e05194, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32625773

RESUMO

The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in food. Regarding PFOS and PFOA occurrence, the final data set available for dietary exposure assessment contained a total of 20,019 analytical results (PFOS n = 10,191 and PFOA n = 9,828). There were large differences between upper and lower bound exposure due to analytical methods with insufficient sensitivity. The CONTAM Panel considered the lower bound estimates to be closer to true exposure levels. Important contributors to the lower bound mean chronic exposure were 'Fish and other seafood', 'Meat and meat products' and 'Eggs and egg products', for PFOS, and 'Milk and dairy products', 'Drinking water' and 'Fish and other seafood' for PFOA. PFOS and PFOA are readily absorbed in the gastrointestinal tract, excreted in urine and faeces, and do not undergo metabolism. Estimated human half-lives for PFOS and PFOA are about 5 years and 2-4 years, respectively. The derivation of a health-based guidance value was based on human epidemiological studies. For PFOS, the increase in serum total cholesterol in adults, and the decrease in antibody response at vaccination in children were identified as the critical effects. For PFOA, the increase in serum total cholesterol was the critical effect. Also reduced birth weight (for both compounds) and increased prevalence of high serum levels of the liver enzyme alanine aminotransferase (ALT) (for PFOA) were considered. After benchmark modelling of serum levels of PFOS and PFOA, and estimating the corresponding daily intakes, the CONTAM Panel established a tolerable weekly intake (TWI) of 13 ng/kg body weight (bw) per week for PFOS and 6 ng/kg bw per week for PFOA. For both compounds, exposure of a considerable proportion of the population exceeds the proposed TWIs.

11.
EFSA J ; 16(2): e05173, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32625808

RESUMO

Following a request from the European Commission, the EFSA Panel on Contaminants in the Food Chain (CONTAM) provided a scientific opinion on the assessment of a decontamination process for fish meal. This process entails solvent (hexane) extraction of fish oil from fish meal to remove dioxins (polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs)) as well as dioxin-like (DL-) and non-dioxin-like (NDL-) polychlorinated biphenyls (PCBs) followed by replacement with decontaminated fish oil. All feed decontamination processes must comply with the acceptability criteria specified in the Commission Regulation (EU) 2015/786. The data provided by the feed business operator were assessed with respect to the efficacy of the process, absence of solvent residues, and on information demonstrating that the process does not adversely affect the nature and characteristics of the product. According to data provided, the process was effective in removing PCDD/Fs and DL-PCBs by approximately 70% and NDL-PCBs by about 60%. The data showed that it is possible to meet the current EU requirements with respect to these contaminants, provided that the level of contamination of untreated fish meal is within the range of the tested batches. It is unlikely that hazardous substances (i.e. hexane) remain in the final product. The Panel considered that there is no evidence that fish oil extraction followed by replacement with decontaminated fish oil leads to detrimental changes in the nutritional composition of the fish meal, although some beneficial constituents (e.g. lipophilic vitamins) might be depleted. The feed business operator submitted information to demonstrate safe disposal of the waste material. The CONTAM Panel concluded that the proposed decontamination process to remove dioxins (PCDD/Fs) and PCBs from fish meal by means of solvent extraction and fish oil replacement was assessed to be compliant with the acceptability criteria provided for in Commission Regulation (EU) 2015/786 of 19 May 2015.

12.
EFSA J ; 16(2): e05174, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32625809

RESUMO

Following a request from the European Commission, the EFSA Panel on Contaminants in the Food Chain (CONTAM) provided a scientific opinion on the assessment of a decontamination process of fish meal. It consisted of extraction of the fish oil, filtration and adsorption with activated carbon, and replacement with decontaminated fish oil in order to reduce the amount of dioxins (polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs)), and dioxin-like (DL-) and non-dioxin-like (NDL-) polychlorinated biphenyls (PCBs). All feed decontamination processes must comply with the acceptability criteria specified in the Commission Regulation (EU) 2015/786. Data provided by the feed business operator were assessed for efficacy of the process and to demonstrate that the process did not adversely affect the characteristics and the nature of the product. The process was effective in removing PCDD/Fs (97%) and DL- and NDL-PCBs (93%). The fish meal produced complied with EU regulations for these contaminants. The Panel considered that the reference to information available in published literature was a pragmatic approach to demonstrate that the replacement of fish oil and the use of activated carbon to adsorb these contaminants does not lead to any detrimental changes in the nature of the fish meal. However, it was noted that the process could deplete some beneficial constituents (e.g. oil-soluble vitamins). Information was provided to demonstrate the safe disposal of the waste material. The CONTAM Panel concluded that on the basis of the information submitted by the feed business operator the proposed decontamination process to remove dioxins (PCDD/Fs) and PCBs from the fish meal by oil extraction followed by replacement with decontaminated fish oil, was compliant with the acceptability criteria provided for in Commission Regulation (EU) 2015/786 of 19 May 2015.

13.
EFSA J ; 16(2): e05175, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32625810

RESUMO

EFSA was asked to deliver a scientific opinion regarding the effect on public health of a possible increase of the maximum level (ML) for 'aflatoxin total' (AFT; sum of aflatoxin B1, aflatoxin B2, aflatoxin G1 and aflatoxin G2) from 4 to 10 µg/kg in peanuts and processed products thereof. Aflatoxins are genotoxic and cause hepatocellular carcinomas in humans. The Panel on Contaminants in the Food Chain (CONTAM Panel) evaluated 8,085 samples of peanuts and 472 samples of peanut butter, with > 60% left-censored. The mean concentration of AFT in peanuts was 2.65/3.56 µg/kg (lower bound (LB)/upper bound (UB)) with a maximum of 1,429 µg/kg. The mean concentration in peanut butter was 1.47/1.92 µg/kg (LB/UB) with a maximum of 407 µg/kg. Peanut oil was not included since all data were left-censored and the ML does not apply for oil. Exposure was calculated for a 'Current ML' and 'Increased ML' scenario, and mean chronic exposure estimates for consumers only, amounted to 0.04-2.74 ng/kg body weight (bw) per day and 0.07-4.28 ng/kg bw per day, respectively. The highest exposures were calculated for adolescents and other children. The CONTAM Panel used the cancer potencies estimated by the Joint FAO/WHO Expert Committee on Food Additives for the risk characterisation. Under the scenario of the current ML, the cancer risk was estimated to range between 0.001 and 0.213 aflatoxin-induced cancers per 100,000 person years. Under the scenario of the increased ML, it ranged between 0.001 and 0.333 aflatoxin-induced cancers per 100,000 person years. Comparing these data calculated under the current ML scenario with the yearly excess cancer risk of 0.014 shows a higher risk for consumers of peanuts and peanut butter in some surveys. The calculated cancer risks indicate that an increase of the ML would further increase the risk by a factor of 1.6-1.8.

14.
EFSA J ; 16(2): e05172, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32625807

RESUMO

The EFSA Panel on Contaminants in the Food Chain (CONTAM) established a tolerable daily intake (TDI) for fumonisin B1 (FB 1) of 1.0 µg/kg body weight (bw) per day based on increased incidence of megalocytic hepatocytes found in a chronic study with mice. The CONTAM Panel considered the limited data available on toxicity and mode of action and structural similarities of FB 2-6 and found it appropriate to include FB 2, FB 3 and FB 4 in a group TDI with FB 1. Modified forms of FBs are phase I and phase II metabolites formed in fungi, infested plants or farm animals. Modified forms also arise from food or feed processing, and include covalent adducts with matrix constituents. Non-covalently bound forms are not considered as modified forms. Modified forms of FBs identified are hydrolysed FB 1-4 (HFB 1-4), partially hydrolysed FB 1-2 (pHFB 1-2), N-(carboxymethyl)-FB 1-3 (NCM-FB 1-3), N-(1-deoxy-d-fructos-1-yl)-FB 1 (NDF-FB 1), O-fatty acyl FB 1, N-fatty acyl FB 1 and N-palmitoyl-HFB 1. HFB 1, pHFB 1, NCM-FB 1 and NDF-FB 1 show a similar toxicological profile but are less potent than FB 1. Although in vitro data shows that N-fatty acyl FBs are more toxic in vitro than FB 1, no in vivo data were available for N-fatty acyl FBs and O-fatty acyl FBs. The CONTAM Panel concluded that it was not appropriate to include modified FBs in the group TDI for FB 1-4. The uncertainty associated with the present assessment is high, but could be reduced provided more data are made available on occurrence, toxicokinetics and toxicity of FB 2-6 and modified forms of FB 1-4.

15.
EFSA J ; 16(5): e05242, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-32625894

RESUMO

Fumonisins, mycotoxins primarily produced by Fusarium verticillioides and Fusarium proliferatum, occur predominantly in cereal grains, especially in maize. The European Commission asked EFSA for a scientific opinion on the risk to animal health related to fumonisins and their modified and hidden forms in feed. Fumonisin B1 (FB 1), FB 2 and FB 3 are the most common forms of fumonisins in feedstuffs and thus were included in the assessment. FB 1, FB 2 and FB 3 have the same mode of action and were considered as having similar toxicological profile and potencies. For fumonisins, the EFSA Panel on Contaminants in the Food Chain (CONTAM) identified no-observed-adverse-effect levels (NOAELs) for cattle, pig, poultry (chicken, ducks and turkeys), horse, and lowest-observed-adverse-effect levels (LOAELs) for fish (extrapolated from carp) and rabbits. No reference points could be identified for sheep, goats, dogs, cats and mink. The dietary exposure was estimated on 18,140 feed samples on FB 1-3 representing most of the feed commodities with potential presence of fumonisins. Samples were collected between 2003 and 2016 from 19 different European countries, but most of them from four Member States. To take into account the possible occurrence of hidden forms, an additional factor of 1.6, derived from the literature, was applied to the occurrence data. Modified forms of fumonisins, for which no data were identified concerning both the occurrence and the toxicity, were not included in the assessment. Based on mean exposure estimates, the risk of adverse health effects of feeds containing FB 1-3 was considered very low for ruminants, low for poultry, horse, rabbits, fish and of potential concern for pigs. The same conclusions apply to the sum of FB 1-3 and their hidden forms, except for pigs for which the risk of adverse health effect was considered of concern.

16.
EFSA J ; 16(5): e05243, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-32625895

RESUMO

Poppy seeds are obtained from the opium poppy (Papaver somniferum L.). They are used as food and to produce edible oil. The opium poppy plant contains narcotic alkaloids such as morphine and codeine. Poppy seeds do not contain the opium alkaloids, but can become contaminated with alkaloids as a result of pest damage and during harvesting. The European Commission asked EFSA to provide an update of the Scientific Opinion on opium alkaloids in poppy seeds. The assessment is based on data on morphine, codeine, thebaine, oripavine, noscapine and papaverine in poppy seed samples. The CONTAM Panel confirms the acute reference dose (ARfD) of 10 µg morphine/kg body weight (bw) and concluded that the concentration of codeine in the poppy seed samples should be taken into account by converting codeine to morphine equivalents, using a factor of 0.2. The ARfD is therefore a group ARfD for morphine and codeine, expressed in morphine equivalents. Mean and high levels of dietary exposure to morphine equivalents from poppy seeds considered to have high levels of opium alkaloids (i.e. poppy seeds from varieties primarily grown for pharmaceutical use) exceed the ARfD in most age groups. For poppy seeds considered to have relatively low concentrations of opium alkaloids (i.e. primarily varieties for food use), some exceedance of the ARfD is also seen at high levels of dietary exposure in most surveys. For noscapine and papaverine, the available data do not allow making a hazard characterisation. However, comparison of the dietary exposure to the recommended therapeutical doses does not suggest a health concern for these alkaloids. For thebaine and oripavine, no risk characterisation was done due to insufficient data. However, for thebaine, limited evidence indicates a higher acute lethality than for morphine and the estimated exposure could present a health risk.

17.
EFSA J ; 16(7): e05332, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32625970

RESUMO

EFSA was asked by the European Commission to update the Scientific Opinion on methodological principles and scientific methods to be taken into account when establishing Reference Points for Action (RPAs) for non-allowed pharmacologically active substances in food of animal origin. This guidance document presents a simple and pragmatic approach which takes into account both analytical and toxicological considerations. The RPA shall be based on the reasonably achievable lowest residue concentration that can unequivocally be determined by official control laboratories, i.e. the reasonably achievable lowest decision limit (CCα). The aim is to check whether this concentration is low enough to adequately protect the consumers of food commodities that contain that substance. The proposed step-wise approach applies toxicological screening values (TSVs), based on genotoxic potential, pharmacological activity, as well as other effects of the substance. The highest dietary exposure corresponding to the reasonably achievable lowest CCα for the substance has to be estimated and compared with the TSV. Where equal to or lower than the TSV, the reasonably achievable lowest CCα can be accepted as the RPA. If higher, the sensitivity of the analytical method needs to be improved. In the case where no further analytical improvements are feasible within a short to medium time frame, a substance-specific risk assessment should be considered. This also applies when the potential adverse effects do not allow use of the decision tree, as for high potency carcinogens, inorganic substances or compounds with allergenic effects or causing blood dyscrasias. The CONTAM Panel concluded that RPAs should be food matrix independent. RPAs cannot be applied to non-edible matrices, which are also monitored for non-allowed pharmacologically active substances.

18.
EFSA J ; 16(11): e05333, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32625737

RESUMO

The European Commission asked EFSA for a scientific opinion on the risks for animal and human health related to the presence of dioxins (PCDD/Fs) and DL-PCBs in feed and food. The data from experimental animal and epidemiological studies were reviewed and it was decided to base the human risk assessment on effects observed in humans and to use animal data as supportive evidence. The critical effect was on semen quality, following pre- and postnatal exposure. The critical study showed a NOAEL of 7.0 pg WHO2005-TEQ/g fat in blood sampled at age 9 years based on PCDD/F-TEQs. No association was observed when including DL-PCB-TEQs. Using toxicokinetic modelling and taking into account the exposure from breastfeeding and a twofold higher intake during childhood, it was estimated that daily exposure in adolescents and adults should be below 0.25 pg TEQ/kg bw/day. The CONTAM Panel established a TWI of 2 pg TEQ/kg bw/week. With occurrence and consumption data from European countries, the mean and P95 intake of total TEQ by Adolescents, Adults, Elderly and Very Elderly varied between, respectively, 2.1 to 10.5, and 5.3 to 30.4 pg TEQ/kg bw/week, implying a considerable exceedance of the TWI. Toddlers and Other Children showed a higher exposure than older age groups, but this was accounted for when deriving the TWI. Exposure to PCDD/F-TEQ only was on average 2.4- and 2.7-fold lower for mean and P95 exposure than for total TEQ. PCDD/Fs and DL-PCBs are transferred to milk and eggs, and accumulate in fatty tissues and liver. Transfer rates and bioconcentration factors were identified for various species. The CONTAM Panel was not able to identify reference values in most farm and companion animals with the exception of NOAELs for mink, chicken and some fish species. The estimated exposure from feed for these species does not imply a risk.

19.
EFSA J ; 16(3): e05082, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32625822

RESUMO

Moniliformin (MON) is a mycotoxin with low molecular weight primarily produced by Fusarium fungi and occurring predominantly in cereal grains. Following a request of the European Commission, the CONTAM Panel assessed the risk of MON to human and animal health related to its presence in food and feed. The limited information available on toxicity and on toxicokinetics in experimental and farm animals indicated haematotoxicity and cardiotoxicity as major adverse health effects of MON. MON causes chromosome aberrations in vitro but no in vivo genotoxicity data and no carcinogenicity data were identified. Due to the limitations in the available toxicity data, human acute or chronic health-based guidance values (HBGV) could not be established. The margin of exposure (MOE) between the no-observed-adverse-effect level (NOAEL) of 6.0 mg/kg body weight (bw) for cardiotoxicity from a subacute study in rats and the acute upper bound (UB) dietary exposure estimates ranged between 4,000 and 73,000. The MOE between the lowest benchmark dose lower confidence limit (for a 5% response - BMDL05) of 0.20 mg MON/kg bw per day for haematological hazards from a 28-day study in pigs and the chronic dietary human exposure estimates ranged between 370 and 5,000,000 for chronic dietary exposures. These MOEs indicate a low risk for human health but were associated with high uncertainty. The toxicity data available for poultry, pigs, and mink indicated a low or even negligible risk for these animals from exposure to MON in feed at the estimated exposure levels under current feeding practices. Assuming similar or lower sensitivity as for pigs, the CONTAM Panel considered a low or even negligible risk for the other animal species for which no toxicity data suitable for hazard characterisation were identified. Additional toxicity studies are needed and depending on their outcome, the collection of more occurrence data on MON in food and feed is recommended to enable a comprehensive human risk assessment.

20.
EFSA J ; 16(8): e05367, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32626015

RESUMO

4,15-Diacetoxyscirpenol (DAS) is a mycotoxin primarily produced by Fusarium fungi and occurring predominantly in cereal grains. As requested by the European Commission, the EFSA Panel on Contaminants in the Food Chain (CONTAM) assessed the risk of DAS to human and animal health related to its presence in food and feed. Very limited information was available on toxicity and on toxicokinetics in experimental and farm animals. Due to the limitations in the available data set, human acute and chronic health-based guidance values (HBGV) were established based on data obtained in clinical trials of DAS as an anticancer agent (anguidine) after intravenous administration to cancer patients. The CONTAM Panel considered these data as informative for the hazard characterisation of DAS after oral exposure. The main adverse effects after acute and repeated exposure were emesis, with a no-observed-adverse-effect level (NOAEL) of 32 µg DAS/kg body weight (bw), and haematotoxicity, with a NOAEL of 65 µg DAS/kg bw, respectively. An acute reference dose (ARfD) of 3.2 µg DAS/kg bw and a tolerable daily intake (TDI) of 0.65 µg DAS/kg bw were established. Based on over 15,000 occurrence data, the highest acute and chronic dietary exposures were estimated to be 0.8 and 0.49 µg DAS/kg bw per day, respectively, and were not of health concern for humans. The limited information for poultry, pigs and dogs indicated a low risk for these animals at the estimated DAS exposure levels under current feeding practices, with the possible exception of fattening chicken. Assuming similar or lower sensitivity than for poultry, the risk was considered overall low for other farm and companion animal species for which no toxicity data were available. In consideration of the similarities of several trichothecenes and the likelihood of co-exposure via food and feed, it could be appropriate to perform a cumulative risk assessment for this group of substances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA