Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36804533

RESUMO

Thermal acclimation allows ectotherms to maintain physiological homeostasis while occupying habitats with constantly changing temperatures. This process is especially important in skeletal muscle which powers most movements necessary for life. We aimed to understand how fish skeletal muscle is impacted by acclimatization in the laboratory. To accomplish this, we compared muscle contraction kinetics of four-week lab acclimatized fish (at 20 °C) to fish taken directly from the field when sea surface temperatures were similar to lab treatment temperature (ocean temperature ranged from 17.7 to 19.9 °C in the four weeks prior to collection at 20 °C). To examine these effects, we chose to study tautog (Tautoga onitis) and cunner (Tautogolabrus adspersus) from Long Island Sound. We found that timing of contraction kinetics in cunner and tautog did not differ from the lab acclimatized and field acclimatized groups. However, lab acclimatized cunner produced greater contraction force than fish taken directly from the field. This increased force production allowed lab acclimatized cunner to produce greater power when compared to cunner from the field treatment. Furthermore, laboratory acclimatized cunner did not express any slow myosin heavy chain, suggesting that their muscle had transitioned to mostly fast twitch fibers after being held at a constant temperature in the lab. None of these effects were seen in tautog. In this work we highlight the importance of considering the impacts laboratory conditions have on experimental conditions.


Assuntos
Peixes , Perciformes , Animais , Peixes/fisiologia , Aclimatação/fisiologia , Perciformes/fisiologia , Temperatura , Músculo Esquelético
2.
Artigo em Inglês | MEDLINE | ID: mdl-36464087

RESUMO

As climate change alters the thermal environment of the planet, interest has grown in how animals may mitigate the impact of a changing environment on physiological function. Thermal acclimation to a warm environment may, for instance, blunt the impact of a warming environment on metabolism by allowing a fish to shift to slower isoforms of functionally significant proteins such as myosin heavy chain. The thermal acclimation of brook trout (Salvelinus fontinalis) was examined by comparing swimming performance, myotomal muscle contraction kinetics and muscle histology in groups of fish acclimated to 4, 10 and 20 °C. Brook trout show a significant acclimation response in their maximum aerobic swimming performance (Ucrit), with acclimation to warm water leading to lower Ucrit values. Maximum muscle shortening velocity (Vmax) decreased significantly with warm acclimation for both red or slow-twitch and white or fast-twitch muscle. Immunohistochemical analysis of myotomal muscle suggests changes in myosin expression underly the thermal acclimation of swimming performance and contraction kinetics. Physiological and histological data suggest a robust acclimation response to a warming environment, one that would reduce the added metabolic costs incurred by an ectotherm when environmental temperature rises for sustained periods of time.


Assuntos
Aclimatação , Músculos , Animais , Aclimatação/fisiologia , Temperatura , Truta/fisiologia , Contração Muscular/fisiologia
3.
J Fish Biol ; 98(4): 1105-1111, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33277926

RESUMO

Group swimming size influences metabolic energy consumption and swimming behaviour in fishes. Hydrodynamic flows and vortices of other fish are thought to be beneficial in terms of the energetic costs of swimming. Similarly, abiotic obstructions have been shown to have similar benefits with respect to metabolic consumption in swimming fish such as rainbow trout Oncorhynchus mykiss. The current study works to examine metabolic rates and swimming behaviours as a function of group swimming with bluegill sunfish Lepomis macrochirus and O. mykiss. Fishes were subjected to individual and group swimming in a respiratory swim tunnel to determine oxygen consumption as a proxy for the metabolic rate of swimming fish. In addition, fish movements within the swim tunnel test chamber were tracked to examine group swimming behaviour. We hypothesized that fish would benefit metabolically from group swimming. In the case of O. mykiss, we also hypothesized that groups would benefit from the presence of an abiotic structure, as has been previously observed in fish swimming individually. Our results suggest that the influence of group size on swimming metabolism is species specific. While L. macrochirus show decreased metabolic rate when swimming in a group compared to individually, O. mykiss did not show such a metabolic benefit from group swimming.


Assuntos
Comportamento Animal/fisiologia , Metabolismo Energético/fisiologia , Oncorhynchus mykiss/fisiologia , Perciformes/fisiologia , Natação/fisiologia , Animais , Hidrodinâmica , Consumo de Oxigênio , Comportamento Social , Especificidade da Espécie
4.
J Exp Biol ; 223(Pt 24)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33106300

RESUMO

Temperature can be a key abiotic factor in fish distribution, as it affects most physiological processes. Specifically, temperature can affect locomotor capabilities, especially as species are exposed to temperatures nearing their thermal limits. In this study, we aimed to understand the effects of temperature on muscle in two labrids that occupy the Northwest Atlantic Ocean. When exposed to cold temperatures in autumn, cunner (Tautogolabrus adspersus) and tautog (Tautoga onitis) go into a state of winter dormancy. Transitions into dormancy vary slightly, where tautog will make short migrations to overwintering habitats while cunner overwinter in year-round habitats. To understand how muscle function changes with temperature, we held fish for 4 weeks at either 5 or 20°C and then ran muscle kinetic and workloop experiments at 5, 10 and 20°C. Following experiments, we used immunohistochemistry staining to identify acclimation effects on myosin isoform expression. Muscle taken from warm-acclimated cunner performed the best, whereas there were relatively few differences among the other three groups. Cunner acclimated at both temperatures downregulated the myosin heavy chain, suggesting a transition in fiber type from slow-oxidative to fast-glycolytic. This change did not amount to a detectable difference in muscle power production and kinetics. However, overall poor performance at cold temperatures could force these fishes into torpor to overwinter. Tautog, alternatively, retained myosin heavy chains, which likely increases locomotor capabilities when making short migrations to overwintering habitats.


Assuntos
Aclimatação , Peixes , Animais , Oceano Atlântico , Temperatura Baixa , Músculos , Temperatura
5.
J Exp Biol ; 219(Pt 7): 1014-21, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26823101

RESUMO

Rainbow smelt, Osmerus mordax, experience a wide range of temperatures in their native habitat. In response to cold, smelt express anti-freeze proteins and the osmolytes glycerol, trimethylamine N-oxide (TMAO) and urea to avoid freezing. The physiological influences of these osmolytes are not well understood. Urea destabilizes proteins, while TMAO counteracts the protein-destabilizing forces of urea. The influence of glycerol on muscle function has not been explored. We examined the effects of urea, glycerol and TMAO through muscle mechanics experiments with treatments of the three osmolytes at physiological concentrations. Experiments were carried out at 10°C. The contractile properties of fast-twitch muscle bundles were determined in physiological saline and in the presence of 50 mmol l(-1)urea, 50 mmol l(-1)TMAO and/or 200 mmol l(-1)glycerol in saline. Muscle exposed to urea and glycerol produced less force and displayed slower contractile properties. However, treatment with TMAO led to higher force and faster relaxation by muscle bundles. TMAO increased power production during cyclical activity, while urea and glycerol led to reduced oscillatory power output. When muscle bundles were exposed to a combination of the three osmolytes, they displayed little change in contraction kinetics relative to control, although power output under lower oscillatory conditions was enhanced while maximum power output was reduced. The results suggest that maintenance of muscle function in winter smelt requires a balanced combination of urea, glycerol and TMAO.


Assuntos
Crioprotetores/metabolismo , Glicerol/metabolismo , Metilaminas/metabolismo , Contração Muscular/fisiologia , Fibras Musculares de Contração Rápida/fisiologia , Osmeriformes/fisiologia , Ureia/metabolismo , Animais , Temperatura Baixa
6.
Am J Bot ; 103(11): 1872-1879, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27864266

RESUMO

PREMISE OF STUDY: Deciduous woody species invest considerable resources in the growth of new foliage and distal stems. This new growth is at risk for mechanical damage from high winds and storms. Pawpaw has large leaves borne distally on thin twigs. Following a storm, pawpaw branches sometimes exhibit a persistent "flipped" orientation, slowly returning upright over 24 h. We investigated biomechanical properties of pawpaw twigs, comparing them to co-occurring species with similarly high leaf areas and loads, which do not exhibit this "flipping". Our goal was to determine biomechanical and structural properties in these species and how variation in form might relate to functional differences. METHODS: We measured flexural stiffness, torsional stiffness, and viscoelastic creep in pawpaw and co-occurring trees Liriodendron tulipifera and Carya cordiformis. We also recorded twig/foliage reconfiguration in high winds. We stained thin cross sections of distal twigs and recorded images using fluorescent light microscopy. KEY RESULTS: Flexural and torsional stiffness increased with twig radius in pawpaw and tulip tree, although torsional stiffness increased more slowly in pawpaw. Pawpaw had a high ratio of flexural to torsional stiffness (EI/GJ) across a range of twig radii and significant viscoelastic creep compared with the other species. CONCLUSIONS: Biomechanical data showed that pawpaw twigs were "twistier" than the comparison species, which were shown previously to alleviate drag-induced damage by reorienting petioles and leaves. Pawpaw has an unusual strategy of low torsional stiffness in twigs, allowing for reorientation of the entire distal appendage, likely minimizing drag-induced damage in storms.


Assuntos
Asimina/crescimento & desenvolvimento , Asimina/anatomia & histologia , Asimina/fisiologia , Fenômenos Biomecânicos , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Caules de Planta/anatomia & histologia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Especificidade da Espécie , Árvores , Vento , Madeira
7.
Artigo em Inglês | MEDLINE | ID: mdl-26945595

RESUMO

Rainbow smelt (Osmerus mordax), a eurythermal fish, live in environments from -1.8 to 20°C, with some populations facing substantial annual variation in environmental temperature. These different temperature regimes pose distinct challenges to locomotion by smelt. Steady swimming performance, red muscle function and muscle myosin content were examined to assess the prediction that cold acclimation by smelt will lead to improved steady swimming performance and that any performance shift will be associated with changes in red muscle function and in its myosin heavy chain composition. Cold acclimated (4°C) smelt had a faster maximum steady swimming speed and swam with a higher tailbeat frequency than warm acclimated (10°C) smelt when tested at the same temperature (10°C). Muscle mechanics experiments demonstrated faster contractile properties in the cold acclimated fish when tested at 10°C. The red muscle of cold acclimated smelt had a shorter twitch times, a shorter relaxation times and a higher maximum shortening velocity. In addition, red muscle from cold acclimated fish displayed reduced thermal sensitivity to cold, maintaining higher force levels at 4°C compared to red muscle from warm acclimated fish. Immunohistochemistry suggests shifts in muscle myosin composition and a decrease in muscle cross-sectional area with cold acclimation. Dot blot analysis confirmed a shift in myosin content. Rainbow smelt do show a significant thermal acclimation response to cold. An examination of published values of maximum muscle shortening velocity in fishes suggests that smelt are particularly well suited to high levels of activity in very cold water.


Assuntos
Aclimatação/fisiologia , Contração Muscular/fisiologia , Miosinas/metabolismo , Osmeriformes/fisiologia , Animais , Temperatura Baixa , Densitometria/métodos , Proteínas de Peixes/metabolismo , Músculo Esquelético/fisiologia , Natação
8.
J Exp Zool A Ecol Integr Physiol ; 341(8): 896-902, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38934396

RESUMO

Slow and sustainable intermittent swimming has recently been described in several Centrarchid fishes, such as bluegill and largemouth bass. This swimming behavior involves short periods of body-caudal fin undulation alternating with variable periods of coasting. This aerobic muscle powered swimming appears to reduce energetic costs for slow, sustainable swimming, with fish employing a "fixed-gear" or constant tailbeat frequency and modulating swimming speed by altering the length of the coasting period. We asked if this swimming behavior was found in other fish species by examining volitional swimming by brook trout in a static swimming tank. Further, we employed muscle mechanics experiments to explore how intermittent swimming affects muscle power output in comparison to steady swimming behavior. Brook trout regularly employ an intermittent swimming form when allowed to swim volitionally, and consistently showed a tailbeat frequency of ~2 Hz. Coasting duration had a significant, inverse relationship to swimming speed. Across a range of slow, sustainable swimming speeds, tailbeat frequency increased modestly with speed. The duration of periods of coasting decreased significantly with increasing speed. Workloop experiments suggest that intermittent swimming reduces fatigue, allowing fish to maintain high power output for longer compared to continuous activity. This study expands the list of species that employ intermittent swimming, suggesting this behavior is a general feature of fishes.


Assuntos
Natação , Truta , Animais , Natação/fisiologia , Truta/fisiologia , Músculo Esquelético/fisiologia , Fenômenos Biomecânicos
9.
J Morphol ; 284(2): e21548, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36538574

RESUMO

Batoids differ from other elasmobranch fishes in that they possess dorsoventrally flattened bodies with enlarged muscled pectoral fins. Most batoids also swim using either of two modes of locomotion: undulation or oscillation of the pectoral fins. In other elasmobranchs (e.g., sharks), the main locomotory muscle is located in the axial myotome; in contrast, the main locomotory muscle in batoids is found in the enlarged pectoral fins. The pectoral fin muscles of sharks have a simple structure, confined to the base of the fin; however, little to no data are available on the more complex musculature within the pectoral fins of batoids. Understanding the types of fibers and their arrangement within the pectoral fins may elucidate how batoid fishes are able to utilize such unique swimming modes. In the present study, histochemical methods including succinate dehydrogenase (SDH) and immunofluoresence were used to determine the different fiber types comprising these muscles in three batoid species: Atlantic stingray (Dasyatis sabina), ocellate river stingray (Potamotrygon motoro) and cownose ray (Rhinoptera bonasus). All three species had muscles comprised of two muscle fiber types (slow-red and fast-white). The undulatory species, D. sabina and P. motoro, had a larger proportion of fast-white muscle fibers compared to the oscillatory species, R. bonasus. The muscle fiber sizes were similar between each species, though generally smaller compared to the axial musculature in other elasmobranch fishes. These results suggest that batoid locomotion can be distinguished using muscle fiber type proportions. Undulatory species are more benthic with fast-white fibers allowing them to contract their muscles quickly, as a possible means of escape from potential predators. Oscillatory species are pelagic and are known to migrate long distances with muscles using slow-red fibers to aid in sustained swimming.


Assuntos
Tubarões , Rajidae , Animais , Nadadeiras de Animais/anatomia & histologia , Fenômenos Biomecânicos , Natação/fisiologia , Locomoção/fisiologia , Rajidae/anatomia & histologia , Peixes , Fibras Musculares Esqueléticas
10.
J Exp Zool A Ecol Integr Physiol ; 339(10): 1026-1035, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37661699

RESUMO

Locomotion is essential for the survival and fitness of animals. Fishes have evolved a variety of mechanisms to minimize the cost of transport. For instance, bluegill sunfish have recently been shown to employ intermittent swimming in nature and in laboratory conditions. We focused on the functional properties of the power-producing muscles that generate propulsive forces in bluegill to understand the implications of intermittent activity. We used in vivo aerobic or red muscle activity parameters (e.g., oscillation frequency and onset time and duration of activation) in muscle physiology experiments to examine muscle power output during intermittent versus steady swimming in these fish. Intermittent propulsion involves swimming at relatively slow speeds with short propulsive bursts alternating with gliding episodes. The propulsive bursts are at higher oscillation frequencies than would be predicted for a given average swimming speed with constant propulsion. The work-loop muscle physiology experiments with red muscle demonstrated that intermittent activity allows muscle to produce sufficient power for swimming compared with imposed steady swimming conditions. Further, the intermittent muscle activity in vitro reduces fatigue relative to steady or continuous activity. This work supports the fixed-gear hypothesis that suggests that there are preferred oscillation frequencies that optimize efficiency in muscle use and minimize cost of transport.


Assuntos
Perciformes , Natação , Animais , Natação/fisiologia , Perciformes/fisiologia , Peixes/fisiologia , Locomoção , Músculos/fisiologia
11.
J Exp Zool A Ecol Integr Physiol ; 335(3): 311-318, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33465296

RESUMO

In response to accelerated temperature shifts due to climate change, the survival of many species will require forms of thermal acclimation to their changing environment. We were interested in how climate change will impact a commercially and recreationally important species of fish, Atlantic salmon (Salmo salar). As climate change alters the thermal environment of their natal streams, we asked how their muscle function will be altered by extended exposure to both warm and cold temperatures. We performed a thermal acclimation study of S. salar muscle mechanics of both fast-twitch, or white, and slow-twitch, or red, myotomal muscle bundles to investigate how temperature acclimated Atlantic salmon would respond across a range of different temperatures. Isometric contraction properties, maximum shortening velocity, and oscillatory power output were measured and compared amongst three groups of salmon-warm acclimated (20°C), cold-acclimated (2°C), and those at their rearing temperature (12°C). The Atlantic salmon showed limited thermal acclimation in their contraction kinetics, and some of the shifts in contractile properties that were observed would not be predicted to mitigate the impact of a warming environment. For instance, the maximum shortening velocity at a common test temperature was higher in the warm acclimated group and lower in the cold-acclimated group. In addition, critical swimming speed did not vary with temperature of acclimation when tested at a common temperature (12°C). Our results suggest that Atlantic salmon populations will continue to struggle in response to a warming environment.


Assuntos
Migração Animal/fisiologia , Mudança Climática , Músculo Esquelético/fisiologia , Salmo salar/fisiologia , Aclimatação , Animais , Temperatura
12.
Artigo em Inglês | MEDLINE | ID: mdl-19840861

RESUMO

This study examines the role of a myoplasmic protein, parvalbumin, in enhancing muscle relaxation by fishes. Parvalbumin is thought to bind free Ca(2+) during muscle contraction, thereby reducing intracellular [Ca(2+)] in muscle and speeding muscle relaxation by reducing Ca(2+) availability to the troponin complex. We hypothesized that parvalbumin expression is ubiquitously expressed in fish muscle and that its expression levels and role in muscle relaxation would depend on the activity level and the thermal environment of a given fish species. Muscle contractile properties and patterns of parvalbumin expression were examined in pinfish (Lagodon rhomboides) and two species of toadfish (gulf toadfish, Opsanus beta, and oyster toadfish, Opsanus tau). Unlike another sparid (sheepshead), the active swimming pinfish does not express parvalbumin in its slow-twitch red muscle. However, both sheepshead and pinfish have relatively high levels of parvalbumin in their myotomal white muscle. Gulf toadfish from the Gulf of Mexico expressed higher levels of parvalbumin and had faster muscle relaxation rates than oyster toadfish from more northern latitudes. The faster muscle of gulf toadfish also expressed relatively more of one parvalbumin isoform, suggesting differences in the binding properties of the two isoforms observed in toadfish swimming muscle. Parvalbumin expression and its role in muscle relaxation appear to vary widely in fishes. There are many control points involved in the calcium transient of contracting muscle, leading to a variety of species-specific solutions to the modulation of muscle relaxation.


Assuntos
Batracoidiformes/metabolismo , Parvalbuminas/metabolismo , Perciformes/metabolismo , Sacos Aéreos/metabolismo , Sacos Aéreos/fisiologia , Animais , Contração Isométrica/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Parvalbuminas/análise
13.
J Exp Zool A Ecol Integr Physiol ; 329(10): 547-556, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30101480

RESUMO

Climate change affects the thermal environment of aquatic organisms. Changes in the thermal environment may affect muscle function in the eurythermal rainbow smelt, Osmerus mordax, and relatively more stenothermal rainbow trout, Oncorhynchus mykiss. Literature suggests that the trout will be more sensitive to changes in environmental temperature, as they experience a more limited range of environmental temperatures. To examine the effects of thermal environment on red muscle function, both the smelt and trout were thermally acclimated to either a warm (12-15°C) or cold (4-5°C) temperature, after which studies of swimming performance and muscle mechanics were performed. The data on swimming performance and maximum muscle shortening velocity in rainbow smelt were previously published. In both species, cold-acclimated (CA) fish swam with a significantly faster maximum aerobic swimming speed than warm-acclimated fish, when tested at a common temperature of 10°C. Similarly, CA smelt and trout had faster red muscle contraction kinetics. However, smelt displayed a greater shift in contractile properties, such as having a significant shift in maximum muscle shortening velocity that was not observed in trout. The smelt red muscle outperformed trout, with twitch and tetanic times of relaxation being significantly faster for CA smelt compared with CA trout, especially when contraction kinetics were tested at 2°C. The smelt shows a greater thermal acclimation response compared with trout, with more robust increases in maximum swimming speed and faster muscle contractile properties. These differences in acclimation response may contribute to understanding how smelt and trout cope with climate change.


Assuntos
Aclimatação/fisiologia , Temperatura Baixa , Músculo Esquelético/fisiologia , Oncorhynchus mykiss/fisiologia , Osmeriformes/fisiologia , Animais , Contração Muscular/fisiologia , Miosinas/metabolismo , Especificidade da Espécie , Natação
14.
PLoS One ; 12(2): e0171538, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28178321

RESUMO

Glutamate-activated α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPA-Rs) mediate the majority of excitatory neurotransmission in brain and thus are major drug targets for diseases associated with hyperexcitability or neurotoxicity. Due to the critical nature of AMPA-Rs in normal brain function, typical AMPA-R antagonists have deleterious effects on cognition and motor function, highlighting the need for more precise modulators. A dramatic increase in the flip isoform of alternatively spliced AMPA-R GluA1 subunits occurs post-seizure in humans and animal models. GluA1-flip produces higher gain AMPA channels than GluA1-flop, increasing network excitability and seizure susceptibility. Splice modulating oligonucleotides (SMOs) bind to pre-mRNA to influence alternative splicing, a strategy that can be exploited to develop more selective drugs across therapeutic areas. We developed a novel SMO, GR1, which potently and specifically decreased GluA1-flip expression throughout the brain of neonatal mice lasting at least 60 days after single intracerebroventricular injection. GR1 treatment reduced AMPA-R mediated excitatory postsynaptic currents at hippocampal CA1 synapses, without affecting long-term potentiation or long-term depression, cellular models of memory, or impairing GluA1-dependent cognition or motor function in mice. Importantly, GR1 demonstrated anti-seizure properties and reduced post-seizure hyperexcitability in neonatal mice, highlighting its drug candidate potential for treating epilepsies and other neurological diseases involving network hyperexcitability.


Assuntos
Processamento Alternativo , Oligonucleotídeos/administração & dosagem , Receptores de AMPA/genética , Convulsões/genética , Convulsões/fisiopatologia , Animais , Animais Recém-Nascidos , Sequência de Bases , Cognição , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Camundongos , Atividade Motora , Oligonucleotídeos/química , Células Piramidais/metabolismo , Convulsões/terapia , Transmissão Sináptica/genética
15.
J Exp Zool A Ecol Genet Physiol ; 323(3): 169-78, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25676176

RESUMO

Swimming in fishes is powered by myotomal red, white and pink skeletal muscle. Slow swimming is powered by the red (slow-twitch muscle), fast speeds are achieved by the white (fast-twitch) muscle and pink muscle apparently serves an intermediate function. In recent years, the physiological properties and molecular composition of red (slow) and white (fast) muscle fibers have been well studied, while the intermediate pink muscle, which falls in a thin sheet between the superficial red muscle and deeper white muscle, has received less attention. The goal of this study is to determine the contractile properties of red, pink, and white muscle and to establish the molecular basis of fiber type variations in contractile properties in a sheepshead (Archosargus probatocephalus). Isometric and isovelocity muscle mechanics experiments demonstrated a general pattern of increasing contractile speed from red to pink to white muscle, although red and pink muscle did not differ significantly for most contraction kinetics variables. As myosin heavy chain (MyHC) is the most important structural protein found in the muscle fibers, MyHC content was examined through immunohistochemistry. Myosin antibodies suggest a gradient in myosin content corresponding to differences in muscle contraction kinetics.


Assuntos
Contração Muscular , Músculo Esquelético/fisiologia , Cadeias Pesadas de Miosina/análise , Perciformes/fisiologia , Natação , Animais , Cinética
16.
Biol Open ; 2(3): 343-50, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23519555

RESUMO

Rainbow smelt (Osmerus mordax) display an impressive ability to acclimate to very cold water temperatures. These fish express both anti-freeze proteins and glycerol in their plasma, liver, muscle and other tissues to avoid freezing at sub-zero temperatures. Maintenance of glycerol levels requires active feeding in very cold water. To understand how these fish can maintain activity at cold temperatures, we explored thermal acclimation by the myotomal muscle of smelt exposed to cold water. We hypothesized that cold-acclimated fish would show enhanced swimming ability due to shifts in muscle contractile properties. We also predicted that shifts in swimming performance would be associated with changes in the expression patterns of muscle proteins such as parvalbumin (PV) and myosin heavy chain (MyHC). Swimming studies show significantly faster swimming by smelt acclimated to 5°C compared to fish acclimated to 20°C when tested at a common test temperature of 10°C. The cold-acclimated fish also had faster muscle contractile properties, such as a maximum shortening velocity (Vmax) almost double that of warm-acclimated fish at the same test temperature. Cold-acclimation is associated with a modest increase in PV levels in the swimming muscle. Fluorescence microscopy using anti-MyHC antibodies suggests that MyHC expression in the myotomal muscle may shift in response to exposure to cold water. The complex set of physiological responses that comprise cold-acclimation in smelt includes modifications in muscle function to permit active locomotion in cold water.

17.
Biol Lett ; 5(2): 274-7, 2009 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-19126527

RESUMO

The physiological properties of vertebrate skeletal muscle typically show a scaling pattern of slower contractile properties with size. In fishes, the myotomal or swimming muscle reportedly follows this pattern, showing slower muscle activation, relaxation and maximum shortening velocity (V(max)) with an increase in body size. We asked if the muscles involved in suction feeding by fishes would follow the same pattern. We hypothesized that feeding muscles in fishes that feed on evasive prey are under selection to maintain high power output and therefore would not show slower contractile properties with size. To test this, we compared contractile properties in feeding muscles (epaxial and sternohyoideus) and swimming muscle (myotomal) for two members of the family Centrarchidae (sunfish): the bluegill (Lepomis macrochirus) and the largemouth bass (Micropterus salmoides). Consistent with our predictions, the V(max) of myotomal muscle in both species slowed with size, while the epaxials showed no significant change in V(max) with size. In the sternohyoideus, V(max) slowed with size in the bluegill but increased with size in the bass. The results indicate that scaling patterns of contractile properties appear to be more closely tied to muscle function (i.e. locomotion versus feeding) than overall patterns of size.


Assuntos
Bass/fisiologia , Tamanho Corporal , Comportamento Alimentar/fisiologia , Contração Muscular , Músculo Esquelético/fisiologia , Natação/fisiologia , Animais
18.
J Exp Zool A Ecol Genet Physiol ; 309(2): 64-72, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18161875

RESUMO

Muscle's contractile properties can vary along different trajectories, including between muscle fiber types, along the body (within a muscle fiber type), and between developmental stages. This study explores the role of the regulatory myosin light chain (MLC2) in modulating contractile properties in rainbow trout myotomal muscle. Rainbow trout show longitudinal variations in muscle activation and relaxation, with faster contractile properties in the anterior myotome. The expression of two muscle proteins, troponin T and parvalbumin, vary along the length of trout in concert with shifts in muscle activation and relaxation. However, there is no longitudinal variation in myosin heavy chain in trout. This study explores the role of MLC2 (or regulatory light chain), part of the myosin hexamer, in contributing to longitudinal variations in contractile properties of trout swimming muscle. We cloned and sequenced two isoforms of MLC2 from trout muscle and used real-time quantitative polymerase chain reaction to assess the relative expression of these two isoforms in red and white muscle from different body positions of two ages of rainbow trout: parr and smolt. Longitudinal variations in slow (sMLC2) but not fast (fMLC2) regulatory light chain isoforms were observed in young trout parr but not older trout smolts. The differences in sMLC2 expression correlated with shifts in muscle contractile properties in the parr.


Assuntos
Regulação da Expressão Gênica/fisiologia , Cadeias Leves de Miosina/metabolismo , Truta/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , Cadeias Leves de Miosina/química , Cadeias Leves de Miosina/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
Comp Biochem Physiol A Mol Integr Physiol ; 147(4): 1074-82, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17451988

RESUMO

Rainbow trout (Oncorhynchus mykiss) display longitudinal and developmental shifts in muscle relaxation rate. This study aimed to determine the role of variations in parvalbumin content in modulating muscle relaxation. Parvalbumin is a low molecular weight protein that buffers myoplasmic Ca2+ and enhances muscle relaxation. In some fish, longitudinal variations in muscle relaxation have been linked to variations in the total amount of parvalbumin present in muscle and in the relative expression of two parvalbumin isoforms. We have demonstrated previously that anterior slow-twitch or red myotomal muscle relaxes more rapidly than that from the posterior for both rainbow and brook trout. Further, younger rainbow trout parr have faster red muscle relaxation rates than older smolts. Here we report similar results for fast-twitch or white muscle. We quantified the parvalbumin expression in red and white muscle from different body positions of rainbow trout parr and smolts and for brook trout (Salvelinus fontinalis) adults. There was a significant shift in total parvalbumin content of muscle: the faster muscle from the anterior myotome contained greater amounts of parvalbumin. For brook trout, longitudinal variation in relaxation rate was also associated with shifts in the relative expression of the two parvalbumin isoforms. The faster muscle of parr contained more parvalbumin. Lastly, trout white muscle tended to have higher levels of parvalbumin and greater levels of the Parv2 (relative to Parv1) isoform as compared to red muscle. Parvalbumin expression correlated with muscle relaxation rate in trout, although there were species-specific differences in the importance of altering total parvalbumin content versus shifts in relative parvalbumin isoform expression.


Assuntos
Relaxamento Muscular/fisiologia , Músculos/metabolismo , Parvalbuminas/metabolismo , Natação/fisiologia , Truta/fisiologia , Animais , Eletroforese em Gel de Poliacrilamida , Contração Isométrica/fisiologia , Fatores de Tempo
20.
Artigo em Inglês | MEDLINE | ID: mdl-17029993

RESUMO

Recent work has employed video and sonometric analysis combined with hydrodynamic modeling to estimate power output by the feeding musculature of largemouth bass in feeding trials. The result was an estimate of approximately 69 W kg(-1) of power by the epaxial muscle during maximal feeding strikes. The present study employed in vitro measurements of force, work and power output by fast-twitch epaxial muscle bundles stimulated under activation conditions measured in vivo to evaluate the power output results of the feeding experiments. Isolated muscle bundles from the epaxial muscle, the sternohyoideus and the lateral red or slow-twitch muscle were tied into a muscle mechanics apparatus, and contractile properties during tetanic contractions and maximum shortening velocity (Vmax) were determined. For the epaxial muscles, work and power output during feeding events was determined by employing mean stimulation conditions derived from a select set of maximal feeding trials: 17% muscle shortening at 3.6 muscle lengths/s, with activation occurring 5 ms before the onset of shortening. Epaxial and sternohyoideus muscle displayed similar contractile properties, and both were considerably faster (Vmax approximately 11-13 ML s(-1)) than red muscle (Vmax approximately 5 ML s(-1)). Epaxial muscle stimulated under in vivo activation conditions generated approximately 60 W kg(-1) with a 17% strain and approximately 86 W kg(-1) with a 12% strain. These values are close to those estimated by hydrodynamic modeling. The short lag time (5 ms) between muscle activation and muscle shortening is apparently a limiting parameter during feeding strikes, with maximum power found at an offset of 15-20 ms. Further, feeding strikes employing a faster shortening velocity generated significantly higher power output. Power production during feeding strikes appears to be limited by the need for fast onset of movement and the hydrodynamic resistance to buccal expansion.


Assuntos
Bass/fisiologia , Ingestão de Alimentos/fisiologia , Músculo Esquelético/fisiologia , Animais , Fenômenos Biomecânicos , Eletromiografia , Técnicas In Vitro , Contração Muscular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA