Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38663994

RESUMO

BACKGROUND: Alzheimer's disease (AD)-related neuropathological changes can occur decades before clinical symptoms. We aimed to investigate whether neurodevelopment and/or neurodegeneration affects the risk of AD, through reducing structural brain reserve and/or increasing brain atrophy, respectively. METHODS: We used bidirectional two-sample Mendelian randomisation to estimate the effects between genetic liability to AD and global and regional cortical thickness, estimated total intracranial volume, volume of subcortical structures and total white matter in 37 680 participants aged 8-81 years across 5 independent cohorts (Adolescent Brain Cognitive Development, Generation R, IMAGEN, Avon Longitudinal Study of Parents and Children and UK Biobank). We also examined the effects of global and regional cortical thickness and subcortical volumes from the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium on AD risk in up to 37 741 participants. RESULTS: Our findings show that AD risk alleles have an age-dependent effect on a range of cortical and subcortical brain measures that starts in mid-life, in non-clinical populations. Evidence for such effects across childhood and young adulthood is weak. Some of the identified structures are not typically implicated in AD, such as those in the striatum (eg, thalamus), with consistent effects from childhood to late adulthood. There was little evidence to suggest brain morphology alters AD risk. CONCLUSIONS: Genetic liability to AD is likely to affect risk of AD primarily through mechanisms affecting indicators of brain morphology in later life, rather than structural brain reserve. Future studies with repeated measures are required for a better understanding and certainty of the mechanisms at play.

2.
J Sleep Res ; : e14205, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38650540

RESUMO

Sleep is fundamental to health. The aim of this study was to analyse and determine factors predicting sleep quality during and after national lockdowns due to severe acute respiratory syndrome coronavirus 2 (COVID-19) in the UK. A longitudinal online survey-based study (SleepQuest) involving UK adults was administered in Spring 2020, Winter 2020, and Winter 2022 including questionnaires probing sleep quality, depression, anxiety, beliefs about sleep, demographics, COVID-19 status, and exercise. The primary outcome was sleep quality (Pittsburgh Sleep Quality Index). A linear mixed-effects model evaluated factors associated with baseline and longitudinal sleep quality. Complete data were provided by 3306 participants in Spring 2020, 2196 participants in Winter 2020, and 1193 in Winter 2022. Participants were mostly female (73.8%), white (97.4%), and aged over 50 years (81.0%). On average, participants reported poor sleep quality in Spring 2020 (mean [SD] Pittsburgh Sleep Quality Index score = 6.59 [3.6]) and Winter 2020 (mean [SD] Pittsburgh Sleep Quality Index score = 6.44 [3.6]), with improved but still poor sleep quality in Winter 2022 (mean [SD] Pittsburgh Sleep Quality Index score = 6.17 [3.5]). Improved sleep quality was driven by better subjective sleep and reduced daytime dysfunction and sleep latency. Being female, older, having caring responsibilities, working nightshifts, and reporting higher levels of depression, anxiety, and unhelpful beliefs about sleep were associated with worse baseline PSQI scores. Better sleep quality was associated with more days exercising per week at baseline. Interventions focusing on improving mental health, exercise, and attitudes towards sleep, particularly in at-risk groups, may improve sleep-related outcomes in future pandemics.

3.
Int J Geriatr Psychiatry ; 39(1): e6041, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38217550

RESUMO

OBJECTIVES: The effects of the COVID-19 pandemic on cognitive decline are not fully understood. Higher social activity and relationships have been associated with decreased risk of dementia. We hypothesised that risk of transition to dementia would increase after the start of the first national lockdown. METHODS: We obtained data from the Brains for Dementia (BDR) cohort, which has collected roughly annual data on 3726 older adults with and without dementia since 2008. Data continued to be collected during the lockdowns, although by telephone and/or video call instead of in person. Individuals diagnosed with dementia at study entry were excluded from this study as were individuals with only one visit. Cognitive status was classified using the Clinical Dementia Rating (CDR) global score. Poisson regression with cubic splines to account for differences in age was used to compare the incidence of dementia before and after March 1st 2020. RESULTS: Out of 2242 individuals, 208 individuals developed dementia before and 50 developed dementia after 01/03/20. The incidence rate ratio of developing dementia after 01/03/20 was 0.847 (0.538-1.335) p = 0.570. In our secondary analysis we found that the positive association between mild cognitive impairment (MCI) and dementia incidence decreased after 1/3/20 (interaction effect p = 0.031). CONCLUSION: The incidence of dementia as defined using the CDR global score did not change significantly after the first lockdown began, but we found evidence that lockdown decreased the positive association between MCI and dementia incidence. This may reflect that individuals were progressing to dementia more rapidly and thus missing the MCI stage or that assessing patients over the phone made diagnosing MCI more challenging.


Assuntos
Doença de Alzheimer , COVID-19 , Disfunção Cognitiva , Demência , Humanos , Idoso , Estudos de Coortes , Pandemias , COVID-19/epidemiologia , Testes Neuropsicológicos , Progressão da Doença , Controle de Doenças Transmissíveis , Disfunção Cognitiva/psicologia , Demência/psicologia , Doença de Alzheimer/psicologia
4.
J Sleep Res ; : e14108, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38035770

RESUMO

Sleep disturbances are prevalent in Alzheimer's disease (AD), affecting individuals during its early stages. We investigated associations between subjective sleep measures and cerebrospinal fluid (CSF) biomarkers of AD in adults with mild cognitive symptoms from the European Prevention of Alzheimer's Dementia Longitudinal Cohort Study, considering the influence of memory performance. A total of 442 participants aged >50 years with a Clinical Dementia Rating (CDR) score of 0.5 completed the Pittsburgh Sleep Quality Index questionnaire and underwent neuropsychological assessment, magnetic resonance imaging acquisition, and CSF sampling. We analysed the relationship of sleep quality with CSF AD biomarkers and cognitive performance in separated multivariate linear regression models, adjusting for covariates. Poorer cross-sectional sleep quality was associated with lower CSF levels of phosphorylated tau and total tau alongside better immediate and delayed memory performance. After adjustment for delayed memory scores, associations between CSF biomarkers and sleep quality became non-significant, and further analysis revealed that memory performance mediated this relationship. In post hoc analyses, poorer subjective sleep quality was associated with lesser hippocampal atrophy, with memory performance also mediating this association. In conclusion, worse subjective sleep quality is associated with less altered AD biomarkers in adults with mild cognitive symptoms (CDR score 0.5). These results could be explained by a systematic recall bias affecting subjective sleep assessment in individuals with incipient memory impairment. Caution should therefore be exercised when interpreting subjective sleep quality measures in memory-impaired populations, emphasising the importance of complementing subjective measures with objective assessments.

5.
BMC Geriatr ; 23(1): 590, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37742001

RESUMO

BACKGROUND: Sleep and circadian rhythm disorders are well recognised in both AD (Alzheimer's Disease) dementia and MCI-AD (Mild Cognitive Impairment due to Alzheimer's Disease). Such abnormalities include insomnia, excessive daytime sleepiness, decreased sleep efficiency, increased sleep fragmentation and sundowning. Enhancing understanding of sleep abnormalities may unveil targets for intervention in sleep, a promising approach given hypotheses that sleep disorders may exacerbate AD pathological progression and represent a contributory factor toward impaired cognitive performance and worse quality of life. This may also permit early diagnosis of AD pathology, widely acknowledged as a pre-requisite for future disease-modifying therapies. This study aims to bridge the divide between in-laboratory polysomnographic studies which allow for rich characterisation of sleep but in an unnatural setting, and naturalistic studies typically approximating sleep through use of non-EEG wearable devices. It is also designed to record sleep patterns over a 2 month duration sufficient to capture both infradian rhythm and compensatory responses following suboptimal sleep. Finally, it harnesses an extensively phenotyped population including with AD blood biomarkers. Its principal aims are to improve characterisation of sleep and biological rhythms in individuals with AD, particularly focusing on micro-architectural measures of sleep, compensatory responses to suboptimal sleep and the relationship between sleep parameters, biological rhythms and cognitive performance. METHODS/DESIGN: This observational cohort study has two arms (AD-MCI / mild AD dementia and aged-matched healthy adults). Each participant undergoes a baseline visit for collection of demographic, physiological and neuropsychological information utilising validated questionnaires. The main study period involves 7 nights of home-based multi-channel EEG sleep recording nested within an 8-week study period involving continuous wrist-worn actigraphy, sleep diaries and regular brief cognitive tests. Measurement of sleep parameters will be at home thereby obtaining a real-world, naturalistic dataset. Cognitive testing will be repeated at 6 months to stratify participants by longitudinal disease progression. DISCUSSION: This study will generate new insights particularly in micro-architectural measures of sleep, circadian patterns and compensatory sleep responses in a population with and without AD neurodegenerative change. It aims to enhance standards of remotely based sleep research through use of a well-phenotyped population and advanced sleep measurement technology.


Assuntos
Doença de Alzheimer , Demência , Humanos , Idoso , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/terapia , Qualidade de Vida , Sono , Estudos de Coortes , Estudos Observacionais como Assunto
6.
Hum Brain Mapp ; 43(11): 3439-3460, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35396899

RESUMO

White matter (WM) alterations have been observed in Huntington disease (HD) but their role in the disease-pathophysiology remains unknown. We assessed WM changes in premanifest HD by exploiting ultra-strong-gradient magnetic resonance imaging (MRI). This allowed to separately quantify magnetization transfer ratio (MTR) and hindered and restricted diffusion-weighted signal fractions, and assess how they drove WM microstructure differences between patients and controls. We used tractometry to investigate region-specific alterations across callosal segments with well-characterized early- and late-myelinating axon populations, while brain-wise differences were explored with tract-based cluster analysis (TBCA). Behavioral measures were included to explore disease-associated brain-function relationships. We detected lower MTR in patients' callosal rostrum (tractometry: p = .03; TBCA: p = .03), but higher MTR in their splenium (tractometry: p = .02). Importantly, patients' mutation-size and MTR were positively correlated (all p-values < .01), indicating that MTR alterations may directly result from the mutation. Further, MTR was higher in younger, but lower in older patients relative to controls (p = .003), suggesting that MTR increases are detrimental later in the disease. Finally, patients showed higher restricted diffusion signal fraction (FR) from the composite hindered and restricted model of diffusion (CHARMED) in the cortico-spinal tract (p = .03), which correlated positively with MTR in the posterior callosum (p = .033), potentially reflecting compensatory mechanisms. In summary, this first comprehensive, ultra-strong gradient MRI study in HD provides novel evidence of mutation-driven MTR alterations at the premanifest disease stage which may reflect neurodevelopmental changes in iron, myelin, or a combination of these.


Assuntos
Doença de Huntington , Substância Branca , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Humanos , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/genética , Doença de Huntington/patologia , Imageamento por Ressonância Magnética/métodos , Mutação , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
7.
Brain ; 144(9): 2812-2825, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34544117

RESUMO

Earlier diagnosis of Alzheimer's disease requires biomarkers sensitive to associated structural and functional changes. While considerable progress has been made in the development of structural biomarkers, functional biomarkers of early cognitive change, unconfounded by effort, practice and level of education, are still needed. We present Fastball, a new EEG method for the passive and objective measurement of recognition memory, that requires no behavioural memory response or comprehension of the task . Younger adults, older adults and Alzheimer's disease patients (n = 20 per group) completed the Fastball task, lasting just under 3 min. Participants passively viewed rapidly presented images and EEG assessed their automatic ability to differentiate between images based on previous exposure, i.e. old/new. Participants were not instructed to attend to previously seen images and provided no behavioural response. Following the Fastball task, participants completed a two-alternative forced choice (2AFC) task to measure their explicit behavioural recognition of previously seen stimuli. Fastball EEG detected significantly impaired recognition memory in Alzheimer's disease compared to healthy older adults (P < 0.001, Cohen's d = 1.52), whereas behavioural recognition was not significantly different between Alzheimer's disease and healthy older adults. Alzheimer's disease patients could be discriminated with high accuracy from healthy older adult controls using the Fastball measure of recognition memory (AUC = 0.86, P < 0.001), whereas discrimination performance was poor using behavioural 2AFC accuracy (AUC = 0.63, P = 0.148). There were no significant effects of healthy ageing, with older and younger adult controls performing equivalently in both the Fastball task and behavioural 2AFC task. Early diagnosis of Alzheimer's disease offers potential for early treatment when quality of life and independence can be retained through disease modification and cognitive enhancement. Fastball provides an alternative way of testing recognition responses that holds promise as a functional marker of disease pathology in stages where behavioural performance deficits are not yet evident. It is passive, non-invasive, quick to administer and uses cheap, scalable EEG technology. Fastball provides a new powerful method for the assessment of cognition in dementia and opens a new door in the development of early diagnosis tools.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/fisiopatologia , Eletroencefalografia/métodos , Memória/fisiologia , Desempenho Psicomotor/fisiologia , Reconhecimento Psicológico/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Estimulação Luminosa/métodos , Fatores de Tempo , Adulto Jovem
8.
Neuroimage ; 238: 118214, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34116150

RESUMO

A better understanding of early brain changes that precede loss of independence in diseases like Alzheimer's disease (AD) is critical for development of disease-modifying therapies. Quantitative MRI, such as T2 relaxometry, can identify microstructural changes relevant to early stages of pathology. Recent evidence suggests heterogeneity of T2 may be a more informative MRI measure of early pathology than absolute T2. Here we test whether T2 markers of brain integrity precede the volume changes we know are present in established AD and whether such changes are most marked in medial temporal lobe (MTL) subfields known to be most affected early in AD. We show that T2 heterogeneity was greater in people with mild cognitive impairment (MCI; n = 49) compared to healthy older controls (n = 99) in all MTL subfields, but this increase was greatest in MTL cortices, and smallest in dentate gyrus. This reflects the spatio-temporal progression of neurodegeneration in AD. T2 heterogeneity in CA1-3 and entorhinal cortex and volume of entorhinal cortex showed some ability to predict cognitive decline, where absolute T2 could not, however further studies are required to verify this result. Increases in T2 heterogeneity in MTL cortices may reflect localised pathological change and may present as one of the earliest detectible brain changes prior to atrophy. Finally, we describe a mechanism by which memory, as measured by accuracy and reaction time on a paired associate learning task, deteriorates with age. Age-related memory deficits were explained in part by lower subfield volumes, which in turn were directly associated with greater T2 heterogeneity. We propose that tissue with high T2 heterogeneity represents extant tissue at risk of permanent damage but with the potential for therapeutic rescue. This has implications for early detection of neurodegenerative diseases and the study of brain-behaviour relationships.


Assuntos
Envelhecimento , Doença de Alzheimer/diagnóstico , Cognição/fisiologia , Disfunção Cognitiva/diagnóstico , Imageamento por Ressonância Magnética/métodos , Lobo Temporal/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Diagnóstico Precoce , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos
9.
J Sleep Res ; 30(4): e13229, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33289311

RESUMO

Suboptimal sleep causes cognitive decline and probably accelerates Alzheimer's Disease (AD) progression. Several sleep interventions have been tested in established AD dementia cases. However early intervention is needed in the course of AD at Mild Cognitive Impairment (MCI) or mild dementia stages to help prevent decline and maintain good quality of life. This systematic review aims to summarize evidence on sleep interventions in MCI and mild AD dementia. Seven databases were systematically searched for interventional studies where ≥ 75% of participants met diagnostic criteria for MCI/mild AD dementia, with a control group and validated sleep outcome measures. Studies with a majority of participants diagnosed with Moderate to Severe AD were excluded. After removal of duplicates, 22,133 references were returned in two separate searches (August 2019 and September 2020). 325 full papers were reviewed with 18 retained. Included papers reported 16 separate studies, total sample (n = 1,056), mean age 73.5 years. 13 interventions were represented: Cognitive Behavioural Therapy - Insomnia (CBT-I), A Multi-Component Group Based Therapy, A Structured Limbs Exercise Programme, Aromatherapy, Phase Locked Loop Acoustic Stimulation, Transcranial Stimulation, Suvorexant, Melatonin, Donepezil, Galantamine, Rivastigmine, Tetrahydroaminoacridine and Continuous Positive Airway Pressure (CPAP). Psychotherapeutic approaches utilising adapted CBT-I and a Structured Limbs Exercise Programme each achieved statistically significant improvements in the Pittsburgh Sleep Quality Index with one study reporting co-existent improved actigraphy variables. Suvorexant significantly increased Total Sleep Time and Sleep Efficiency whilst reducing Wake After Sleep Onset time. Transcranial Stimulation enhanced cortical slow oscillations and spindle power during daytime naps. Melatonin significantly reduced sleep latency in two small studies and sleep to wakefulness transitions in a small sample. CPAP demonstrated efficacy in participants with Obstructive Sleep Apnoea. Evidence to support other interventions was limited. Whilst new evidence is emerging, there remains a paucity of evidence for sleep interventions in MCI and mild AD highlighting a pressing need for high quality experimental studies exploring alternative sleep interventions.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/terapia , Disfunção Cognitiva/complicações , Disfunção Cognitiva/terapia , Sono/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Humanos , Qualidade de Vida
10.
Age Ageing ; 50(1): 72-80, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33197937

RESUMO

Given considerable variation in diagnostic and therapeutic practice, there is a need for national guidance on the use of neuroimaging, fluid biomarkers, cognitive testing, follow-up and diagnostic terminology in mild cognitive impairment (MCI). MCI is a heterogenous clinical syndrome reflecting a change in cognitive function and deficits on neuropsychological testing but relatively intact activities of daily living. MCI is a risk state for further cognitive and functional decline with 5-15% of people developing dementia per year. However, ~50% remain stable at 5 years and in a minority, symptoms resolve over time. There is considerable debate about whether MCI is a useful clinical diagnosis, or whether the use of the term prevents proper inquiry (by history, examination and investigations) into underlying causes of cognitive symptoms, which can include prodromal neurodegenerative disease, other physical or psychiatric illness, or combinations thereof. Cognitive testing, neuroimaging and fluid biomarkers can improve the sensitivity and specificity of aetiological diagnosis, with growing evidence that these may also help guide prognosis. Diagnostic criteria allow for a diagnosis of Alzheimer's disease to be made where MCI is accompanied by appropriate biomarker changes, but in practice, such biomarkers are not available in routine clinical practice in the UK. This would change if disease-modifying therapies became available and required a definitive diagnosis but would present major challenges to the National Health Service and similar health systems. Significantly increased investment would be required in training, infrastructure and provision of fluid biomarkers and neuroimaging. Statistical techniques combining markers may provide greater sensitivity and specificity than any single disease marker but their practical usefulness will depend on large-scale studies to ensure ecological validity and that multiple measures, e.g. both cognitive tests and biomarkers, are widely available for clinical use. To perform such large studies, we must increase research participation amongst those with MCI.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doenças Neurodegenerativas , Atividades Cotidianas , Peptídeos beta-Amiloides , Biomarcadores , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/epidemiologia , Consenso , Progressão da Doença , Humanos , Testes Neuropsicológicos , Fragmentos de Peptídeos , Medicina Estatal
11.
J Vis ; 20(13): 6, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33289797

RESUMO

Studying the sources of errors in memory recall has proven invaluable for understanding the mechanisms of working memory (WM). While one-dimensional memory features (e.g., color, orientation) can be analyzed using existing mixture modeling toolboxes to separate the influence of imprecision, guessing, and misbinding (the tendency to confuse features that belong to different memoranda), such toolboxes are not currently available for two-dimensional spatial WM tasks. Here we present a method to isolate sources of spatial error in tasks where participants have to report the spatial location of an item in memory, using two-dimensional mixture models. The method recovers simulated parameters well and is robust to the influence of response distributions and biases, as well as number of nontargets and trials. To demonstrate the model, we fit data from a complex spatial WM task and show the recovered parameters correspond well with previous spatial WM findings and with recovered parameters on a one-dimensional analogue of this task, suggesting convergent validity for this two-dimensional modeling approach. Because the extra dimension allows greater separation of memoranda and responses, spatial tasks turn out to be much better for separating misbinding from imprecision and guessing than one-dimensional tasks. Code for these models is freely available in the MemToolbox2D package and is integrated to work with the commonly used MATLAB package MemToolbox.


Assuntos
Memória de Curto Prazo/fisiologia , Memória Espacial/fisiologia , Idoso , Feminino , Percepção de Forma/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Psicológicos , Testes Neuropsicológicos , Orientação Espacial/fisiologia
12.
J Magn Reson Imaging ; 49(2): 445-455, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30209854

RESUMO

BACKGROUND: Quantitative T2 and diffusion MRI indices inform about tissue state and microstructure, both of which may be affected by pathology before tissue atrophy. PURPOSE: To evaluate the capability of both volumetric and quantitative MRI (qMRI) of the hippocampus and entorhinal cortex (EC) for classification of amnestic mild cognitive impairment (aMCI) and Alzheimer's disease dementia (ADD). STUDY TYPE: Retrospective cross-sectional study. POPULATION: Consecutive cohorts of healthy age-matched controls (n = 62), aMCI patients (n = 25), and ADD patients (n = 14). FIELD STRENGTH/SEQUENCE: 3T using T1-weighted imaging, T2-weighted imaging, T2 relaxometry and diffusion tensor imaging (DTI). ASSESSMENT: Montreal Cognitive Assessment and paired associate learning tests for cognitive state. Hippocampal subfield volumes by the automated segmentation of hippocampal subfields system from structural brain images. T2 relaxation time and DTI indices quantified for hippocampal subfields. The fraction of voxels with high T2 values (>20 ms above subfield median) was calculated and regionalized for hippocampus and EC. STATISTICAL TESTS: Support vector machine and receiver operating characteristic analyses from cognitive and MRI data. RESULTS: qMRI classified aMCI and ADD with excellent sensitivity (79.0% and 94.5%, respectively) and specificity (85.6% and 86.1%, respectively), superior to volumes alone (70.0% and 84.5% for respective sensitivities; 82.2 and 91.1 for respective specificities) and similar to cognitive tests (61.7% and 87.5% for respective sensitivities; 88.2% and 90.7% for respective specificities). Regions of high T2 are dispersed throughout each hippocampal subfield in aMCI and ADD with higher concentration than controls, and was most pronounced in the EC. No other individual qMRI marker than EC volume can separate aMCI from ADD, however. DATA CONCLUSION: qMRI markers of hippocampal and entorhinal tissue states are sensitive and specific classifiers of aMCI and ADD. They may serve as markers of a neurodegenerative state preceding volume loss. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019;49:445-455.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Amnésia/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Demência/diagnóstico por imagem , Córtex Entorrinal/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Idoso , Idoso de 80 Anos ou mais , Atrofia/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Cognição , Estudos Transversais , Imagem de Tensor de Difusão , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Curva ROC , Reprodutibilidade dos Testes , Estudos Retrospectivos , Sensibilidade e Especificidade , Máquina de Vetores de Suporte , Lobo Temporal/diagnóstico por imagem
13.
J Sleep Res ; 28(1): e12728, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30033579

RESUMO

Understanding how sleep-related information processing affects behaviour may allow targeted cognitive enhancement to improve quality of life. Previous evidence demonstrates that implicitly-presented cues are processed during subsequent sleep, resulting in enhanced cognition upon waking. We used a masked priming task to investigate this further. To assess sleep-mediated effects on reactions to implicitly presented primes, participants performed an Affective Priming Task pre-and-post 90 min of sleep, compared with an equal period of wakefulness. The Choice Reaction Time Task-a similar binary choice task but without the implicit aspect-was used as a control. Sixteen healthy participants across a range of ages were tested and sleep monitored using electroencephalogram. In stark contrast to the control task, in the Affective Priming Task reaction times significantly improved across all prime types after sleep, but not an equal period of wake. There was no significant change in reaction times on Choice Reaction Time Task after wakefulness or sleep. Rather than a general suppression of all primes, the data are more in keeping with specific strategic optimisation of prime processing during sleep. We plan future work to probe the mechanisms and neuroanatomical substrate of sleep-mediated prime processing.


Assuntos
Eletroencefalografia/métodos , Processamento Eletrônico de Dados/métodos , Qualidade de Vida/psicologia , Sono/fisiologia , Adulto , Fatores Etários , Feminino , Humanos , Masculino , Adulto Jovem
16.
Age Ageing ; 47(6): 778-784, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30010696

RESUMO

Background: dementia is a common cause of altered decision-making capacity. Determining whether an individual has the ability to make a specific decision can be very challenging for both clinicians and researchers. The UK legislation requires that we both promote residual capacity where possible, and protect vulnerable adults who cannot make independent decisions. We evaluated published instruments designed to aid in the assessment of capacity, focussing on those meeting the UK legal requirements. We also consider further disease and culture-specific factors which may influence decision making. Methods: a search of electronic databases was made for articles published between 2000 and 2017 detailing structured tools for the assessment of mental capacity. These were evaluated against the UK legal requirements. Results: nine tools were identified which fulfilled the UK legal requirements. Their design and structure varied, as did the level of reliability and validity data available. Some instruments can be tailored for a specific decisional scenario, whilst others are designed for use by particular patient groups. Discussion: a wide range of mental capacity assessment instruments is available, but not all fulfil the UK legal requirements. Healthcare professionals and researchers should be mindful of personal, cultural and disease-specific factors when assessing capacity. No gold standard for capacity assessment exists, which hampers the evaluation of different approaches. A combination of the opinion of a healthcare professional or researcher trained in capacity evaluation, plus the use of a structured assessment tool is the most robust approach.


Assuntos
Envelhecimento/psicologia , Tomada de Decisões , Demência/diagnóstico , Saúde Mental , Testes de Estado Mental e Demência , Fatores Etários , Características Culturais , Demência/etnologia , Demência/psicologia , Demência/terapia , Humanos , Consentimento Livre e Esclarecido , Competência Mental , Saúde Mental/etnologia , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Comportamento Social
17.
Brain ; 144(9): 2568-2570, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34687209
18.
J Cogn Neurosci ; 27(10): 2035-50, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26102227

RESUMO

Memory consolidation underpins adaptive behavior and dopaminergic networks may be critical for prolonged, selective information storage. To understand the time course of the dopaminergic contribution to memory consolidation in humans, here we investigate the effect of dopaminergic medication on recall and recognition in the short and longer term in Parkinson disease (PD). Fifteen people with PD were each tested on or off dopaminergic medication during learning/early consolidation (Day 1) and/or late consolidation (Day 2). Fifteen age-matched healthy participants were tested only once. On Day 1 participants learned new information, and early episodic memory was tested after 30 min. Then on Day 2, recall and recognition were retested after a 24-hr delay. Participants on medication on Day 1 recalled less information at 30 min and 24 hr. In contrast, patients on medication on Day 2 (8-24 hr after learning) recalled more information at 24 hr than those off medication. Although recognition sensitivity was unaffected by medication, response bias was dependent on dopaminergic state: Medication during learning induced a more liberal bias 24 hr later, whereas patients off medication during learning were more conservative responders 24 hr later. We use computational modeling to propose possible mechanisms for this change in response bias. In summary, dopaminergic medication in PD patients during learning impairs early consolidation of episodic memory and makes delayed responses more liberal, but enhances late memory consolidation presumably through a dopamine-dependent consolidation pathway that may be active during sleep.


Assuntos
Dopaminérgicos/farmacologia , Dopamina/fisiologia , Aprendizagem/fisiologia , Memória Episódica , Rememoração Mental/fisiologia , Doença de Parkinson/fisiopatologia , Reconhecimento Psicológico/fisiologia , Idoso , Dopaminérgicos/administração & dosagem , Feminino , Humanos , Aprendizagem/efeitos dos fármacos , Masculino , Rememoração Mental/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Reconhecimento Psicológico/efeitos dos fármacos , Fatores de Tempo
19.
Neurogenetics ; 16(3): 215-221, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25894286

RESUMO

The composition of the neuronal cell surface dictates synaptic plasticity and thereby cognitive development. This remodeling of the synapses is governed by the endocytic network which internalize transmembrane proteins, then sort them back to the cell surface or carry them to the lysosome for degradation. The multi-protein retromer complex is central to this selection, capturing specific transmembrane proteins and remodeling the cell membrane to form isolated cargo-enriched transport carriers. We investigated a consanguineous family with four patients who presented in infancy with intractable myoclonic epilepsy and lack of psychomotor development. Using exome analysis, we identified a homozygous deleterious mutation in SNX27, which encodes sorting nexin 27, a retromer cargo adaptor. In western analysis of patient fibroblasts, the encoded mutant protein was expressed at an undetectable level when compared with a control sample. The patients' presentation and clinical course recapitulate that reported for the SNX27 knock-out mouse. Since the cargo proteins for SNX27-mediated sorting include subunits of ionotropic glutamate receptors and endosome-to-cell surface synaptic insertion of AMPA receptors is severely perturbed in SNX27(-/-) neurons, it is proposed that at least part of the neurological aberrations observed in the patients is attributed to defective sorting of ionotropic glutamate receptors. SNX27 deficiency is now added to the growing list of neurodegenerative disorders associated with retromer dysfunction.


Assuntos
Epilepsias Mioclônicas/genética , Doenças Neurodegenerativas/genética , Nexinas de Classificação/deficiência , Nexinas de Classificação/genética , Encéfalo/patologia , Encéfalo/fisiopatologia , Feminino , Fibroblastos/metabolismo , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Linhagem
20.
Cochrane Database Syst Rev ; (6): CD010896, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26102272

RESUMO

BACKGROUND: In the UK, dementia affects 5% of the population aged over 65 years and 25% of those over 85 years. Frontotemporal dementia (FTD) represents one subtype and is thought to account for up to 16% of all degenerative dementias. Although the core of the diagnostic process in dementia rests firmly on clinical and cognitive assessments, a wide range of investigations are available to aid diagnosis.Regional cerebral blood flow (rCBF) single-photon emission computed tomography (SPECT) is an established clinical tool that uses an intravenously injected radiolabelled tracer to map blood flow in the brain. In FTD the characteristic pattern seen is hypoperfusion of the frontal and anterior temporal lobes. This pattern of blood flow is different to patterns seen in other subtypes of dementia and so can be used to differentiate FTD.It has been proposed that a diagnosis of FTD, (particularly early stage), should be made not only on the basis of clinical criteria but using a combination of other diagnostic findings, including rCBF SPECT. However, more extensive testing comes at a financial cost, and with a potential risk to patient safety and comfort. OBJECTIVES: To determine the diagnostic accuracy of rCBF SPECT for diagnosing FTD in populations with suspected dementia in secondary/tertiary healthcare settings and in the differential diagnosis of FTD from other dementia subtypes. SEARCH METHODS: Our search strategy used two concepts: (a) the index test and (b) the condition of interest. We searched citation databases, including MEDLINE (Ovid SP), EMBASE (Ovid SP), BIOSIS (Ovid SP), Web of Science Core Collection (ISI Web of Science), PsycINFO (Ovid SP), CINAHL (EBSCOhost) and LILACS (Bireme), using structured search strategies appropriate for each database. In addition we searched specialised sources of diagnostic test accuracy studies and reviews including: MEDION (Universities of Maastricht and Leuven), DARE (Database of Abstracts of Reviews of Effects) and HTA (Health Technology Assessment) database.We requested a search of the Cochrane Register of Diagnostic Test Accuracy Studies and used the related articles feature in PubMed to search for additional studies. We tracked key studies in citation databases such as Science Citation Index and Scopus to ascertain any further relevant studies. We identified 'grey' literature, mainly in the form of conference abstracts, through the Web of Science Core Collection, including Conference Proceedings Citation Index and Embase. The most recent search for this review was run on the 1 June 2013.Following title and abstract screening of the search results, full-text papers were obtained for each potentially eligible study. These papers were then independently evaluated for inclusion or exclusion. SELECTION CRITERIA: We included both case-control and cohort (delayed verification of diagnosis) studies. Where studies used a case-control design we included all participants who had a clinical diagnosis of FTD or other dementia subtype using standard clinical diagnostic criteria. For cohort studies, we included studies where all participants with suspected dementia were administered rCBF SPECT at baseline. We excluded studies of participants from selected populations (e.g. post-stroke) and studies of participants with a secondary cause of cognitive impairment. DATA COLLECTION AND ANALYSIS: Two review authors extracted information on study characteristics and data for the assessment of methodological quality and the investigation of heterogeneity. We assessed the methodological quality of each study using the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies) tool. We produced a narrative summary describing numbers of studies that were found to have high/low/unclear risk of bias as well as concerns regarding applicability. To produce 2 x 2 tables, we dichotomised the rCBF SPECT results (scan positive or negative for FTD) and cross-tabulated them against the results for the reference standard. These tables were then used to calculate the sensitivity and specificity of the index test. Meta-analysis was not performed due to the considerable between-study variation in clinical and methodological characteristics. MAIN RESULTS: Eleven studies (1117 participants) met our inclusion criteria. These consisted of six case-control studies, two retrospective cohort studies and three prospective cohort studies. Three studies used single-headed camera SPECT while the remaining eight used multiple-headed camera SPECT. Study design and methods varied widely. Overall, participant selection was not well described and the studies were judged as having either high or unclear risk of bias. Often the threshold used to define a positive SPECT result was not predefined and the results were reported with knowledge of the reference standard. Concerns regarding applicability of the studies to the review question were generally low across all three domains (participant selection, index test and reference standard).Sensitivities and specificities for differentiating FTD from non-FTD ranged from 0.73 to 1.00 and from 0.80 to 1.00, respectively, for the three multiple-headed camera studies. Sensitivities were lower for the two single-headed camera studies; one reported a sensitivity and specificity of 0.40 (95% confidence interval (CI) 0.05 to 0.85) and 0.95 (95% CI 0.90 to 0.98), respectively, and the other a sensitivity and specificity of 0.36 (95% CI 0.24 to 0.50) and 0.92 (95% CI 0.88 to 0.95), respectively.Eight of the 11 studies which used SPECT to differentiate FTD from Alzheimer's disease used multiple-headed camera SPECT. Of these studies, five used a case-control design and reported sensitivities of between 0.52 and 1.00, and specificities of between 0.41 and 0.86. The remaining three studies used a cohort design and reported sensitivities of between 0.73 and 1.00, and specificities of between 0.94 and 1.00. The three studies that used single-headed camera SPECT reported sensitivities of between 0.40 and 0.80, and specificities of between 0.61 and 0.97. AUTHORS' CONCLUSIONS: At present, we would not recommend the routine use of rCBF SPECT in clinical practice because there is insufficient evidence from the available literature to support this.Further research into the use of rCBF SPECT for differentiating FTD from other dementias is required. In particular, protocols should be standardised, study populations should be well described, the threshold for 'abnormal' scans predefined and clear details given on how scans are analysed. More prospective cohort studies that verify the presence or absence of FTD during a period of follow up should be undertaken.


Assuntos
Circulação Cerebrovascular , Demência Frontotemporal/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Estudos de Casos e Controles , Estudos de Coortes , Demência/diagnóstico por imagem , Diagnóstico Diferencial , Lobo Frontal/irrigação sanguínea , Demência Frontotemporal/fisiopatologia , Humanos , Sensibilidade e Especificidade , Lobo Temporal/irrigação sanguínea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA