Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Development ; 150(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37971083

RESUMO

Plant organ primordia develop successively at the shoot apical meristem (SAM). In Arabidopsis, primordia formed early in development differentiate into vegetative leaves, whereas those formed later generate inflorescence branches and flowers. TERMINAL FLOWER 1 (TFL1), a negative regulator of transcription, acts in the SAM to delay flowering and to maintain inflorescence meristem indeterminacy. We used confocal microscopy, time-resolved transcript profiling and reverse genetics to elucidate this dual role of TFL1. We found that TFL1 accumulates dynamically in the SAM reflecting its dual function. Moreover, TFL1 represses two major sets of genes. One set includes genes that promote flowering, expression of which increases earlier in tfl1 mutants. The other set is spatially misexpressed in tfl1 inflorescence meristems. The misexpression of these two gene sets in tfl1 mutants depends upon FD transcription factor, with which TFL1 interacts. Furthermore, the MADS-box gene SEPALLATA 4, which is upregulated in tfl1, contributes both to the floral transition and shoot determinacy defects of tfl1 mutants. Thus, we delineate the dual function of TFL1 in shoot development in terms of its dynamic spatial distribution and different modes of gene repression.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica no Desenvolvimento , Flores , Meristema/metabolismo
2.
PLoS Genet ; 19(10): e1011000, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37819989

RESUMO

In Arabidopsis thaliana, stomata are composed of two guard cells that control the aperture of a central pore to facilitate gas exchange between the plant and its environment, which is particularly important during photosynthesis. Although leaves are the primary photosynthetic organs of flowering plants, floral organs are also photosynthetically active. In the Brassicaceae, evidence suggests that silique photosynthesis is important for optimal seed oil content. A group of transcription factors containing MADS DNA binding domains is necessary and sufficient to confer floral organ identity. Elegant models, such as the ABCE model of flower development and the floral quartet model, have been instrumental in describing the molecular mechanisms by which these floral organ identity proteins govern flower development. However, we lack a complete understanding of how the floral organ identity genes interact with the underlying leaf development program. Here, we show that the MADS domain transcription factor AGAMOUS (AG) represses stomatal development on the gynoecial valves, so that maturation of stomatal complexes coincides with fertilization. We present evidence that this regulation by AG is mediated by direct transcriptional repression of a master regulator of the stomatal lineage, MUTE, and show data that suggests this interaction is conserved among several members of the Brassicaceae. This work extends our understanding of the mechanisms underlying floral organ formation and provides a framework to decipher the mechanisms that control floral organ photosynthesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas , Flores , Proteínas de Plantas/genética
3.
PLoS Genet ; 19(5): e1010766, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37186640

RESUMO

The floral transition occurs at the shoot apical meristem (SAM) in response to favourable external and internal signals. Among these signals, variations in daylength (photoperiod) act as robust seasonal cues to activate flowering. In Arabidopsis, long-day photoperiods stimulate production in the leaf vasculature of a systemic florigenic signal that is translocated to the SAM. According to the current model, FLOWERING LOCUS T (FT), the main Arabidopsis florigen, causes transcriptional reprogramming at the SAM, so that lateral primordia eventually acquire floral identity. FT functions as a transcriptional coregulator with the bZIP transcription factor FD, which binds DNA at specific promoters. FD can also interact with TERMINAL FLOWER 1 (TFL1), a protein related to FT that acts as a floral repressor. Thus, the balance between FT-TFL1 at the SAM influences the expression levels of floral genes targeted by FD. Here, we show that the FD-related bZIP transcription factor AREB3, which was previously studied in the context of phytohormone abscisic acid signalling, is expressed at the SAM in a spatio-temporal pattern that strongly overlaps with FD and contributes to FT signalling. Mutant analyses demonstrate that AREB3 relays FT signals redundantly with FD, and the presence of a conserved carboxy-terminal SAP motif is required for downstream signalling. AREB3 shows unique and common patterns of expression with FD, and AREB3 expression levels are negatively regulated by FD thus forming a compensatory feedback loop. Mutations in another bZIP, FDP, further aggravate the late flowering phenotypes of fd areb3 mutants. Therefore, multiple florigen-interacting bZIP transcription factors have redundant functions in flowering at the SAM.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Florígeno/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/genética , Meristema/metabolismo
5.
Plant Cell ; 34(10): 3873-3898, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35866980

RESUMO

Copper (Cu) is a cofactor of around 300 Arabidopsis proteins, including photosynthetic and mitochondrial electron transfer chain enzymes critical for adenosine triphosphate (ATP) production and carbon fixation. Plant acclimation to Cu deficiency requires the transcription factor SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE7 (SPL7). We report that in the wild type (WT) and in the spl7-1 mutant, respiratory electron flux via Cu-dependent cytochrome c oxidase is unaffected under both normal and low-Cu cultivation conditions. Supplementing Cu-deficient medium with exogenous sugar stimulated growth of the WT, but not of spl7 mutants. Instead, these mutants accumulated carbohydrates, including the signaling sugar trehalose 6-phosphate, as well as ATP and NADH, even under normal Cu supply and without sugar supplementation. Delayed spl7-1 development was in agreement with its attenuated sugar responsiveness. Functional TARGET OF RAPAMYCIN and SNF1-RELATED KINASE1 signaling in spl7-1 argued against fundamental defects in these energy-signaling hubs. Sequencing of chromatin immunoprecipitates combined with transcriptome profiling identified direct targets of SPL7-mediated positive regulation, including Fe SUPEROXIDE DISMUTASE1 (FSD1), COPPER-DEFICIENCY-INDUCED TRANSCRIPTION FACTOR1 (CITF1), and the uncharacterized bHLH23 (CITF2), as well as an enriched upstream GTACTRC motif. In summary, transducing energy availability into growth and reproductive development requires the function of SPL7. Our results could help increase crop yields, especially on Cu-deficient soils.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cobre/química , Trifosfato de Adenosina/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica de Plantas , Crescimento e Desenvolvimento , NAD/metabolismo , Fosfatos/metabolismo , Sirolimo , Solo , Superóxidos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Trealose/metabolismo
6.
PLoS Biol ; 19(2): e3001043, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33529186

RESUMO

MicroRNAs (miRNAs) play important roles in regulating flowering and reproduction of angiosperms. Mature miRNAs are encoded by multiple MIRNA genes that can differ in their spatiotemporal activities and their contributions to gene regulatory networks, but the functions of individual MIRNA genes are poorly defined. We functionally analyzed the activity of all 5 Arabidopsis thaliana MIR172 genes, which encode miR172 and promote the floral transition by inhibiting the accumulation of APETALA2 (AP2) and APETALA2-LIKE (AP2-LIKE) transcription factors (TFs). Through genome editing and detailed confocal microscopy, we show that the activity of miR172 at the shoot apex is encoded by 3 MIR172 genes, is critical for floral transition of the shoot meristem under noninductive photoperiods, and reduces accumulation of AP2 and TARGET OF EAT2 (TOE2), an AP2-LIKE TF, at the shoot meristem. Utilizing the genetic resources generated here, we show that the promotion of flowering by miR172 is enhanced by the MADS-domain TF FRUITFULL, which may facilitate long-term silencing of AP2-LIKE transcription, and that their activities are partially coordinated by the TF SQUAMOSA PROMOTER-BINDING-LIKE PROTEIN 15. Thus, we present a genetic framework for the depletion of AP2 and AP2-LIKE TFs at the shoot apex during floral transition and demonstrate that this plays a central role in floral induction.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Homeodomínio/metabolismo , MicroRNAs/genética , Proteínas de Arabidopsis/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Meristema/genética , Fotoperíodo , Fatores de Transcrição
7.
Cell ; 138(4): 625-7, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19703391

RESUMO

During post-embryonic development, plants undergo a series of phase transitions, from juvenile to adult and from the vegetative to the reproductive phase. Recent findings reported in Cell (Wang et al., 2009; Wu et al., 2009) and Developmental Cell (Yamaguchi et al., 2009) reveal how microRNAs and their transcription factor targets coordinate these phase transitions.


Assuntos
MicroRNAs/metabolismo , Desenvolvimento Vegetal , Proteínas de Plantas/metabolismo , Plantas/metabolismo , RNA de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Plantas/genética
8.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34548402

RESUMO

The timing of reproduction is an adaptive trait in many organisms. In plants, the timing, duration, and intensity of flowering differ between annual and perennial species. To identify interspecies variation in these traits, we studied introgression lines derived from hybridization of annual and perennial species, Arabis montbretiana and Arabis alpina, respectively. Recombination mapping identified two tandem A. montbretiana genes encoding MADS-domain transcription factors that confer extreme late flowering on A. alpina These genes are related to the MADS AFFECTING FLOWERING (MAF) cluster of floral repressors of other Brassicaceae species and were named A. montbretiana (Am) MAF-RELATED (MAR) genes. AmMAR1 but not AmMAR2 prevented floral induction at the shoot apex of A. alpina, strongly enhancing the effect of the MAF cluster, and MAR1 is absent from the genomes of all A. alpina accessions analyzed. Exposure of plants to cold (vernalization) represses AmMAR1 transcription and overcomes its inhibition of flowering. Assembly of the tandem arrays of MAR and MAF genes of six A. alpina accessions and three related species using PacBio long-sequence reads demonstrated that the MARs arose within the Arabis genus by interchromosomal transposition of a MAF1-like gene followed by tandem duplication. Time-resolved comparative RNA-sequencing (RNA-seq) suggested that AmMAR1 may be retained in A. montbretiana to enhance the effect of the AmMAF cluster and extend the duration of vernalization required for flowering. Our results demonstrate that MAF genes transposed independently in different Brassicaceae lineages and suggest that they were retained to modulate adaptive flowering responses that differ even among closely related species.


Assuntos
Arabis/metabolismo , Flores/metabolismo , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/metabolismo , Fenótipo , Proteínas de Plantas/metabolismo , Arabis/genética , Arabis/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética
9.
Proc Biol Sci ; 290(2011): 20231401, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37989245

RESUMO

Flowering phenology is important in the adaptation of many plants to their local environment, but its adaptive value has not been extensively studied in herbaceous perennials. We used Arabis alpina as a model system to determine the importance of flowering phenology to fitness of a herbaceous perennial with a wide geographical range. Individual plants representative of local genetic diversity (accessions) were collected across Europe, including in Spain, the Alps and Scandinavia. The flowering behaviour of these accessions was documented in controlled conditions, in common-garden experiments at native sites and in situ in natural populations. Accessions from the Alps and Scandinavia varied in whether they required exposure to cold (vernalization) to induce flowering, and in the timing and duration of flowering. By contrast, all Spanish accessions obligately required vernalization and had a short duration of flowering. Using experimental gardens at native sites, we show that an obligate requirement for vernalization increases survival in Spain. Based on our analyses of genetic diversity and flowering behaviour across Europe, we propose that in the model herbaceous perennial A. alpina, an obligate requirement for vernalization, which is correlated with short duration of flowering, is favoured by selection in Spain where the plants experience a long growing season.


Assuntos
Arabis , Arabis/genética , Flores/genética , Geografia , Países Escandinavos e Nórdicos , Europa (Continente)
10.
Plant Cell ; 32(5): 1479-1500, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32132131

RESUMO

Several pathways conferring environmental flowering responses in Arabidopsis (Arabidopsis thaliana) converge on developmental processes that mediate the floral transition in the shoot apical meristem. Many characterized mutations disrupt these environmental responses, but downstream developmental processes have been more refractory to mutagenesis. Here, we constructed a quintuple mutant impaired in several environmental pathways and showed that it possesses severely reduced flowering responses to changes in photoperiod and ambient temperature. RNA-sequencing (RNA-seq) analysis of the quintuple mutant showed that the expression of genes encoding gibberellin biosynthesis enzymes and transcription factors involved in the age pathway correlates with flowering. Mutagenesis of the quintuple mutant generated two late-flowering mutants, quintuple ems1 (qem1) and qem2 The mutated genes were identified by isogenic mapping and transgenic complementation. The qem1 mutant is an allele of the gibberellin 20-oxidase gene ga20ox2, confirming the importance of gibberellin for flowering in the absence of environmental responses. By contrast, qem2 is impaired in CHROMATIN REMODELING4 (CHR4), which has not been genetically implicated in floral induction. Using co-immunoprecipitation, RNA-seq, and chromatin immunoprecipitation sequencing, we show that CHR4 interacts with transcription factors involved in floral meristem identity and affects the expression of key floral regulators. Therefore, CHR4 mediates the response to endogenous flowering pathways in the inflorescence meristem to promote floral identity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Ligação a DNA/metabolismo , Meio Ambiente , Flores/genética , Flores/fisiologia , Mutagênese/genética , Mutação/genética , Proteínas de Arabidopsis/genética , DNA Helicases , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Loci Gênicos , Genoma de Planta , Histonas/metabolismo , Meristema/genética , Anotação de Sequência Molecular , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Ligação Proteica , Fatores de Tempo
11.
Plant J ; 105(6): 1459-1476, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33336445

RESUMO

Perennial plants maintain their lifespan through several growth seasons. Arabis alpina serves as a model Brassicaceae species to study perennial traits. Lateral stems of A. alpina have a proximal vegetative zone with a dormant bud zone and a distal senescing seed-producing inflorescence zone. We addressed how this zonation is distinguished at the anatomical level, whether it is related to nutrient storage and which signals affect the zonation. We found that the vegetative zone exhibits secondary growth, which we termed the perennial growth zone (PZ). High-molecular-weight carbon compounds accumulate there in cambium and cambium derivatives. Neither vernalization nor flowering were requirements for secondary growth and the sequestration of storage compounds. The inflorescence zone with only primary growth, termed the annual growth zone (AZ), or roots exhibited different storage characteristics. Following cytokinin application cambium activity was enhanced and secondary phloem parenchyma was formed in the PZ and also in the AZ. In transcriptome analysis, cytokinin-related genes represented enriched gene ontology terms and were expressed at a higher level in the PZ than in the AZ. Thus, A. alpina primarily uses the vegetative PZ for nutrient storage, coupled to cytokinin-promoted secondary growth. This finding lays a foundation for future studies addressing signals for perennial growth.


Assuntos
Arabis/metabolismo , Citocininas/metabolismo , Caules de Planta/metabolismo , Arabis/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Metabolismo dos Lipídeos , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Amido/metabolismo
12.
New Phytol ; 235(1): 356-371, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35318684

RESUMO

The APETALA2 (AP2) transcription factor regulates flower development, floral transition and shoot apical meristem (SAM) maintenance in Arabidopsis. AP2 is also regulated at the post-transcriptional level by microRNA172 (miR172), but the contribution of this to SAM maintenance is poorly understood. We generated transgenic plants carrying a form of AP2 that is resistant to miR172 (rAP2) or carrying a wild-type AP2 susceptible to miR172. Phenotypic and genetic analyses were performed on these lines and mir172 mutants to study the role of AP2 regulation by miR172 on meristem size and the rate of flower production. We found that rAP2 enlarges the inflorescence meristem by increasing cell size and cell number. Misexpression of rAP2 from heterologous promoters showed that AP2 acts in the central zone (CZ) and organizing center (OC) to increase SAM size. Furthermore, we found that AP2 is negatively regulated by AUXIN RESPONSE FACTOR 3 (ARF3). However, genetic analyses indicated that ARF3 also influences SAM size and flower production rate independently of AP2. The study identifies miR172/AP2 as a regulatory module controlling inflorescence meristem size and suggests that transcriptional regulation of AP2 by ARF3 fine-tunes SAM size determination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/metabolismo , Inflorescência/metabolismo , Meristema/metabolismo , MicroRNAs/genética , Proteínas Nucleares/metabolismo
13.
New Phytol ; 234(2): 494-512, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35118670

RESUMO

Rice inflorescence development determines yield and relies on the activity of axillary meristems (AMs); however, high-resolution analysis of its early development is lacking. Here, we have used high-throughput single-cell RNA sequencing to profile 37 571 rice inflorescence cells and constructed a genome-scale gene expression resource covering the inflorescence-to-floret transition during early reproductive development. The differentiation trajectories of florets and AMs were reconstructed, and discrete cell types and groups of regulators in the highly heterogeneous young inflorescence were identified and then validated by in situ hybridization and with fluorescent marker lines. Our data demonstrate that a WOX transcription factor, DWARF TILLER1, regulates flower meristem activity, and provide evidence for the role of auxin in rice inflorescence branching by exploring the expression and biological role of the auxin importer OsAUX1. Our comprehensive transcriptomic atlas of early rice inflorescence development, supported by genetic evidence, provides single-cell-level insights into AM differentiation and floret development.


Assuntos
Meristema , Oryza , Regulação da Expressão Gênica de Plantas , Inflorescência , Meristema/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma/genética
14.
PLoS Genet ; 15(4): e1008065, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30946745

RESUMO

Integration of environmental and endogenous cues at plant shoot meristems determines the timing of flowering and reproductive development. The MADS box transcription factor FLOWERING LOCUS C (FLC) of Arabidopsis thaliana is an important repressor of floral transition, which blocks flowering until plants are exposed to winter cold. However, the target genes of FLC have not been thoroughly described, and our understanding of the mechanisms by which FLC represses transcription of these targets and how this repression is overcome during floral transition is still fragmentary. Here, we identify and characterize TARGET OF FLC AND SVP1 (TFS1), a novel target gene of FLC and its interacting protein SHORT VEGETATIVE PHASE (SVP). TFS1 encodes a B3-type transcription factor, and we show that tfs1 mutants are later flowering than wild-type, particularly under short days. FLC and SVP repress TFS1 transcription leading to deposition of trimethylation of Iysine 27 of histone 3 (H3K27me3) by the Polycomb Repressive Complex 2 at the TFS1 locus. During floral transition, after downregulation of FLC by cold, TFS1 transcription is promoted by SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), a MADS box protein encoded by another target of FLC/SVP. SOC1 opposes PRC function at TFS1 through recruitment of the histone demethylase RELATIVE OF EARLY FLOWERING 6 (REF6) and the SWI/SNF chromatin remodeler ATPase BRAHMA (BRM). This recruitment of BRM is also strictly required for SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9 (SPL9) binding at TFS1 to coordinate RNAPII recruitment through the Mediator complex. Thus, we show that antagonistic chromatin modifications mediated by different MADS box transcription factor complexes play a crucial role in defining the temporal and spatial patterns of transcription of genes within a network of interactions downstream of FLC/SVP during floral transition.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Domínio MADS/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Cromatina/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Código das Histonas/genética , Proteínas de Domínio MADS/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Modelos Biológicos , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Complexo Repressor Polycomb 2 , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Proc Natl Acad Sci U S A ; 116(24): 12078-12083, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31123146

RESUMO

The genetic and molecular analysis of trichome development in Arabidopsis thaliana has generated a detailed knowledge about the underlying regulatory genes and networks. However, how rapidly these mechanisms diverge during evolution is unknown. To address this problem, we used an unbiased forward genetic approach to identify most genes involved in trichome development in the related crucifer species Arabisalpina In general, we found most trichome mutant classes known in A. thaliana We identified orthologous genes of the relevant A. thaliana genes by sequence similarity and synteny and sequenced candidate genes in the A. alpina mutants. While in most cases we found a highly similar gene-phenotype relationship as known from Arabidopsis, there were also striking differences in the regulation of trichome patterning, differentiation, and morphogenesis. Our analysis of trichome patterning suggests that the formation of two classes of trichomes is regulated differentially by the homeodomain transcription factor AaGL2 Moreover, we show that overexpression of the GL3 basic helix-loop-helix transcription factor in A. alpina leads to the opposite phenotype as described in A. thaliana Mathematical modeling helps to explain how this nonintuitive behavior can be explained by different ratios of GL3 and GL1 in the two species.


Assuntos
Arabis/genética , Tricomas/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica de Plantas/genética , Morfogênese/genética , Mutação/genética , Fenótipo , Fatores de Transcrição/genética
16.
EMBO J ; 36(7): 904-918, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28270524

RESUMO

Seasonal reproduction in many organisms requires detection of day length. This is achieved by integrating information on the light environment with an internal photoperiodic time-keeping mechanism. Arabidopsis thaliana promotes flowering in response to long days (LDs), and CONSTANS (CO) transcription factor represents a photoperiodic timer whose stability is higher when plants are exposed to light under LDs. Here, we show that PSEUDO RESPONSE REGULATOR (PRR) proteins directly mediate this stabilization. PRRs interact with and stabilize CO at specific times during the day, thereby mediating its accumulation under LDs. PRR-mediated stabilization increases binding of CO to the promoter of FLOWERING LOCUS T (FT), leading to enhanced FT transcription and early flowering under these conditions. PRRs were previously reported to contribute to timekeeping by regulating CO transcription through their roles in the circadian clock. We propose an additional role for PRRs in which they act upon CO protein to promote flowering, directly coupling information on light exposure to the timekeeper and allowing recognition of LDs.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Ligação a DNA/metabolismo , Flores/efeitos da radiação , Luz , Fatores de Transcrição/metabolismo
17.
Development ; 145(3)2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29361563

RESUMO

As originally proposed by Goethe in 1790, floral organs are derived from leaf-like structures. The conversion of leaves into different types of floral organ is mediated by floral homeotic proteins, which, as described by the ABCE model of flower development, act in a combinatorial manner. However, how these transcription factors bring about this transformation process is not well understood. We have previously shown that floral homeotic proteins are involved in suppressing the formation of branched trichomes, a hallmark of leaf development, on reproductive floral organs of Arabidopsis Here, we present evidence that the activities of the C function gene AGAMOUS (AG) and the related SHATTERPROOF1/2 genes are superimposed onto the regulatory network that controls the distribution of trichome formation in an age-dependent manner. We show that AG regulates cytokinin responses and genetically interacts with the organ polarity gene KANADI1 to suppress trichome initiation on gynoecia. Thus, our results show that parts of the genetic program for leaf development remain active during flower formation but have been partially rewired through the activities of the floral homeotic proteins.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteína AGAMOUS de Arabidopsis/genética , Proteína AGAMOUS de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Citocininas/genética , Citocininas/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Modelos Biológicos , Mutação , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tricomas/crescimento & desenvolvimento , Tricomas/metabolismo
18.
New Phytol ; 232(5): 2071-2088, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34480759

RESUMO

A group of MADS transcription factors (TFs) are believed to control temperature-mediated bud dormancy. These TFs, called DORMANCY-ASSOCIATED MADS-BOX (DAM), are encoded by genes similar to SHORT VEGETATIVE PHASE (SVP) from Arabidopsis. MADS proteins form transcriptional complexes whose combinatory composition defines their molecular function. However, how MADS multimeric complexes control the dormancy cycle in trees is unclear. Apple MdDAM and other dormancy-related MADS proteins form complexes with MdSVPa, which is essential for the ability of transcriptional complexes to bind to DNA. Sequential DNA-affinity purification sequencing (seq-DAP-seq) was performed to identify the genome-wide binding sites of apple MADS TF complexes. Target genes associated with the binding sites were identified by combining seq-DAP-seq data with transcriptomics datasets obtained using a glucocorticoid receptor fusion system, and RNA-seq data related to apple dormancy. We describe a gene regulatory network (GRN) formed by MdSVPa-containing complexes, which regulate the dormancy cycle in response to environmental cues and hormonal signaling pathways. Additionally, novel molecular evidence regarding the evolutionary functional segregation between DAM and SVP proteins in the Rosaceae is presented. MdSVPa sequentially forms complexes with the MADS TFs that predominate at each dormancy phase, altering its DNA-binding specificity and, therefore, the transcriptional regulation of its target genes.


Assuntos
Arabidopsis , Malus , Arabidopsis/genética , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
J Exp Bot ; 72(1): 4-14, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-32369593

RESUMO

Responses to environmental cues synchronize reproduction of higher plants to the changing seasons. The genetic basis of these responses has been intensively studied in the Brassicaceae. The MADS-domain transcription factor FLOWERING LOCUS C (FLC) plays a central role in the regulatory network that controls flowering of Arabidopsis thaliana in response to seasonal cues. FLC blocks flowering until its transcription is stably repressed by extended exposure to low temperatures in autumn or winter and, therefore, FLC activity is assumed to limit flowering to spring. Recent reviews describe the complex epigenetic mechanisms responsible for FLC repression in cold. We focus on the gene regulatory networks controlled by FLC and how they influence floral transition. Genome-wide approaches determined the in vivo target genes of FLC and identified those whose transcription changes during vernalization or in flc mutants. We describe how studying FLC targets such as FLOWERING LOCUS T, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 15, and TARGET OF FLC AND SVP 1 can explain different flowering behaviours in response to vernalization and other environmental cues, and help define mechanisms by which FLC represses gene transcription. Elucidating the gene regulatory networks controlled by FLC provides access to the developmental and physiological mechanisms that regulate floral transition.


Assuntos
Proteínas de Arabidopsis , Proteínas de Domínio MADS , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Reprodução , Estações do Ano
20.
Proc Natl Acad Sci U S A ; 115(4): 816-821, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29301967

RESUMO

Plant mating systems have profound effects on levels and structuring of genetic variation and can affect the impact of natural selection. Although theory predicts that intermediate outcrossing rates may allow plants to prevent accumulation of deleterious alleles, few studies have empirically tested this prediction using genomic data. Here, we study the effect of mating system on purifying selection by conducting population-genomic analyses on whole-genome resequencing data from 38 European individuals of the arctic-alpine crucifer Arabis alpina We find that outcrossing and mixed-mating populations maintain genetic diversity at similar levels, whereas highly self-fertilizing Scandinavian A. alpina show a strong reduction in genetic diversity, most likely as a result of a postglacial colonization bottleneck. We further find evidence for accumulation of genetic load in highly self-fertilizing populations, whereas the genome-wide impact of purifying selection does not differ greatly between mixed-mating and outcrossing populations. Our results demonstrate that intermediate levels of outcrossing may allow efficient selection against harmful alleles, whereas demographic effects can be important for relaxed purifying selection in highly selfing populations. Thus, mating system and demography shape the impact of purifying selection on genomic variation in A. alpina These results are important for an improved understanding of the evolutionary consequences of mating system variation and the maintenance of mixed-mating strategies.


Assuntos
Arabis/genética , Seleção Genética , Autofertilização , Europa (Continente) , Geografia , Mutação , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA