Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Ecol Lett ; 20(8): 969-980, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28609810

RESUMO

Correlative species distribution models are based on the observed relationship between species' occurrence and macroclimate or other environmental variables. In climates predicted less favourable populations are expected to decline, and in favourable climates they are expected to persist. However, little comparative empirical support exists for a relationship between predicted climate suitability and population performance. We found that the performance of 93 populations of 34 plant species worldwide - as measured by in situ population growth rate, its temporal variation and extinction risk - was not correlated with climate suitability. However, correlations of demographic processes underpinning population performance with climate suitability indicated both resistance and vulnerability pathways of population responses to climate: in less suitable climates, plants experienced greater retrogression (resistance pathway) and greater variability in some demographic rates (vulnerability pathway). While a range of demographic strategies occur within species' climatic niches, demographic strategies are more constrained in climates predicted to be less suitable.


Assuntos
Mudança Climática , Plantas , Demografia
2.
Ecol Lett ; 19(12): 1429-1438, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27790817

RESUMO

Plant population responses are key to understanding the effects of threats such as climate change and invasions. However, we lack demographic data for most species, and the data we have are often geographically aggregated. We determined to what extent existing data can be extrapolated to predict population performance across larger sets of species and spatial areas. We used 550 matrix models, across 210 species, sourced from the COMPADRE Plant Matrix Database, to model how climate, geographic proximity and phylogeny predicted population performance. Models including only geographic proximity and phylogeny explained 5-40% of the variation in four key metrics of population performance. However, there was poor extrapolation between species and extrapolation was limited to geographic scales smaller than those at which landscape scale threats typically occur. Thus, demographic information should only be extrapolated with caution. Capturing demography at scales relevant to landscape level threats will require more geographically extensive sampling.


Assuntos
Clima , Ecossistema , Filogenia , Fenômenos Fisiológicos Vegetais , Plantas/classificação , Plantas/genética , Bases de Dados Factuais , Demografia , Modelos Estatísticos , Especificidade da Espécie
3.
Ecol Appl ; 23(3): 523-36, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23734483

RESUMO

Management of damaging invasive plants is often undertaken by multiple decision makers, each managing only a small part of the invader's population. As weeds can move between properties and re-infest eradicated sites from unmanaged sources, the dynamics of multiple decision makers plays a significant role in weed prevalence and invasion risk at the landscape scale. We used a spatially explicit agent-based simulation to determine how individual agent behavior, in concert with weed population ecology, determined weed prevalence. We compared two invasive grass species that differ in ecology, control methods, and costs: Nassella trichotoma (serrated tussock) and Eragrostis curvula (African love grass). The way decision makers reacted to the benefit of management had a large effect on the extent of a weed. If benefits of weed control outweighed the costs, and either net benefit was very large or all agents were very sensitive to net benefits, then agents tended to act synchronously, reducing the pool of infested agents available to spread the weed. As N. trichotoma was more damaging than E. curvula and had more effective control methods, agents chose to manage it more often, which resulted in lower prevalence of N. trichotoma. A relatively low number of agents who were intrinsically less motivated to control weeds led to increased prevalence of both species. This was particularly apparent when long-distance dispersal meant each infested agent increased the invasion risk for a large portion of the landscape. In this case, a small proportion of land mangers reluctant to control, regardless of costs and benefits, could lead to the whole landscape being infested, even when local control stopped new infestations. Social pressure was important, but only if it was independent of weed prevalence, suggesting that early access to information, and incentives to act on that information, may be crucial in stopping a weed from infesting large areas. The response of our model to both behavioral and ecological parameters was highly nonlinear. This implies that the outcomes of weed management programs that deal with multiple land mangers could be highly variable in both space and through time.


Assuntos
Ecossistema , Plantas Daninhas , Poaceae/fisiologia , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/métodos , Meio Ambiente , Espécies Introduzidas , Modelos Biológicos
4.
Environ Manage ; 48(5): 878-81, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21947366

RESUMO

Recently Prévot-Julliard and colleagues presented a concept paper on biological conservation strategies using exotic species as a case study. They emphasized the difficulty of integrating conservation into a broad picture that accounts for public perception as well as scientific knowledge. We support this general call for better integration of society in conservation research, but we believe that the original framework might misguide conservation practices if wrongly interpreted. Our objective is to complement their paper and correct a few misleading points, by showing that (1) for regions of high endemicity "reservation" may be the best conservation practice, and does not prevent public participation, (2) aiming for broad societal agreement is valuable, but in some cases risky, and always complex, and (3) calling a harmful invasive species harmful shouldn't be an issue. The Australian context provides us with many cases of the labeling of exotic species as harmful or not, using inputs from scientists, industry, and the public. Integration of social and scientific points of view can only improve conservation on the ground if it allows managers to use the ecological, economic and social impacts of exotic species to prioritize conservation actions in an operative way.


Assuntos
Conservação dos Recursos Naturais/métodos , Animais
5.
Ecology ; 102(4): e03287, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33480055

RESUMO

The spatial scale at which demographic performance (e.g., net reproductive output) varies can profoundly influence landscape-level population growth and persistence, and many demographically pertinent processes such as species interactions and resource acquisition vary at fine scales. We compared the magnitude of demographic variation associated with fine-scale heterogeneity (<10 m), with variation due to larger-scale (>1 ha) fluctuations associated with fire disturbance. We used a spatially explicit model within an IPM modeling framework to evaluate the demographic importance of fine-scale variation. We used a measure of expected lifetime fruit production, EF , that is assumed to be proportional to lifetime fitness. Demographic differences and their effects on EF were assessed in a population of the herbaceous perennial Hypericum cumulicola (~2,600 individuals), within a patch of Florida rosemary scrub (400 × 80 m). We compared demographic variation over fine spatial scales to demographic variation between years across 6 yr after a fire. Values of EF changed by orders of magnitude over <10 m. This variation in fitness over fine spatial scales (<10 m) is commensurate to postfire changes in fitness for this fire-adapted perennial. A life table response experiment indicated that fine-scale spatial variation in vital rates, especially survival, explains as much change in EF as demographic changes caused by time-since-fire, a key driver in this system. Our findings show that environmental changes over a few tens of meters can have ecologically meaningful implications for population growth and extinction.


Assuntos
Ecossistema , Incêndios , Humanos
6.
Nat Sustain ; 3(1): 63-71, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31942455

RESUMO

Pesticides have underpinned significant improvements in global food security, albeit with associated environmental costs. Currently, the yield benefits of pesticides are threatened as overuse has led to wide-scale evolution of resistance. Yet despite this threat, there are no large-scale estimates of crop yield losses or economic costs due to resistance. Here, we combine national-scale density and resistance data for the weed Alopecurus myosuroides (black-grass) with crop yield maps and a new economic model to estimate that the annual cost of resistance in England is £0.4bn in lost gross profit (2014 prices), and annual wheat yield loss due to resistance is 0.8 million tonnes. A total loss of herbicide control against black-grass would cost £1bn and 3.4 million tonnes of lost wheat yield annually. Worldwide, there are 253 herbicide-resistant weeds, so the global impact of resistance could be enormous. Our research provides an urgent case for national-scale planning to combat further evolution of resistance, and an incentive for policies focused on increasing yields through more sustainable food-production systems rather than relying so heavily on herbicides.

7.
Nat Plants ; 5(4): 343-351, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30962531

RESUMO

Weeds pose severe threats to agricultural and natural landscapes worldwide. One major reason for the failure to effectively manage weeds at landscape scales is that current Best Management Practice guidelines, and research on how to improve such guidelines, focus too narrowly on property-level management decisions. Insufficiently considered are the aggregate effects of individual actions to determine landscape-scale outcomes, or whether there are collective practices that would improve weed management outcomes. Here, we frame landscape-scale weed management as a social dilemma, where trade-offs occur between individual and collective interests. We apply a transdisciplinary system approach-integrating the perspectives of ecologists, evolutionary biologists and agronomists into a social science theory of social dilemmas-to four landscape-scale weed management challenges: (i) achieving plant biosecurity, (ii) preventing weed seed contamination, (iii) maintaining herbicide susceptibility and (iv) sustainably using biological control. We describe how these four challenges exhibit characteristics of 'public good problems', wherein effective weed management requires the active contributions of multiple actors, while benefits are not restricted to these contributors. Adequate solutions to address these public good challenges often involve a subset of the eight design principles developed by Elinor Ostrom for 'common pool social dilemmas', together with design principles that reflect the public good nature of the problems. This paper is a call to action for scholars and practitioners to broaden our conceptualization and approaches to weed management problems. Such progress begins by evaluating the public good characteristics of specific weed management challenges and applying context-specific design principles to realize successful and sustainable weed management.


Assuntos
Controle de Plantas Daninhas , Conservação dos Recursos Naturais/métodos , Produção Agrícola , Desenvolvimento Sustentável , Controle de Plantas Daninhas/métodos
8.
Nat Ecol Evol ; 2(3): 529-536, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29434350

RESUMO

Repeated use of xenobiotic chemicals has selected for the rapid evolution of resistance, threatening health and food security at a global scale. Strategies for preventing the evolution of resistance include cycling and mixtures of chemicals and diversification of management. We currently lack large-scale studies that evaluate the efficacy of these different strategies for minimizing the evolution of resistance. Here we use a national-scale data set of occurrence of the weed Alopecurus myosuroides (black-grass) in the United Kingdom to address this. Weed densities are correlated with assays of evolved resistance, supporting the hypothesis that resistance is driving weed abundance at a national scale. Resistance was correlated with the frequency of historical herbicide applications, suggesting that evolution of resistance is primarily driven by intensity of exposure to herbicides, but was unrelated directly to other cultural techniques. We find that populations resistant to one herbicide are likely to show resistance to multiple herbicide classes. Finally, we show that the economic costs of evolved resistance are considerable: loss of control through resistance can double the economic costs of weeds. This research highlights the importance of managing threats to food production and healthcare systems using an evolutionarily informed approach in a proactive not reactive manner.


Assuntos
Resistência a Herbicidas , Herbicidas/administração & dosagem , Plantas Daninhas/efeitos dos fármacos , Poaceae/efeitos dos fármacos , Plantas Daninhas/fisiologia , Poaceae/fisiologia , Reino Unido
9.
PLoS One ; 8(7): e68678, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874718

RESUMO

Predicting which species are likely to cause serious impacts in the future is crucial for targeting management efforts, but the characteristics of such species remain largely unconfirmed. We use data and expert opinion on tropical and subtropical grasses naturalised in Australia since European settlement to identify naturalised and high-impact species and subsequently to test whether high-impact species are predictable. High-impact species for the three main affected sectors (environment, pastoral and agriculture) were determined by assessing evidence against pre-defined criteria. Twenty-one of the 155 naturalised species (14%) were classified as high-impact, including four that affected more than one sector. High-impact species were more likely to have faster spread rates (regions invaded per decade) and to be semi-aquatic. Spread rate was best explained by whether species had been actively spread (as pasture), and time since naturalisation, but may not be explanatory as it was tightly correlated with range size and incidence rate. Giving more weight to minimising the chance of overlooking high-impact species, a priority for biosecurity, meant a wider range of predictors was required to identify high-impact species, and the predictive power of the models was reduced. By-sector analysis of predictors of high impact species was limited by their relative rarity, but showed sector differences, including to the universal predictors (spread rate and habitat) and life history. Furthermore, species causing high impact to agriculture have changed in the past 10 years with changes in farming practice, highlighting the importance of context in determining impact. A rationale for invasion ecology is to improve the prediction and response to future threats. Although our study identifies some universal predictors, it suggests improved prediction will require a far greater emphasis on impact rather than invasiveness, and will need to account for the individual circumstances of affected sectors and the relative rarity of high-impact species.


Assuntos
Ecossistema , Poaceae , Austrália , Biodiversidade , Meio Ambiente , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA