Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Appl Physiol ; 124(5): 1499-1508, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38129698

RESUMO

PURPOSE: Soccer substitutes are exposed to periods of limited activity before entering match-play, likely negating benefits of active warm-ups. This study aimed to determine the effects of using a passive heat intervention following a pre-match, and half-time warm-up, on muscle and core temperature in soccer players during ambient (18 °C) and cold (2 °C) conditions. METHODS: On four occasions, 8 male players, completed a pre-match warm-up, followed by 45 min of rest. Following this, participants completed a half-time re-warm-up followed by an additional 45 min of rest, simulating a full match for an unplaying substitute. During periods of rest, participants wore either standardised tracksuit bottoms (CON), or heated trousers (HEAT), over typical soccer attire. RESULTS: Vastus lateralis temperature declined less in HEAT compared to CON following the 1st half in 2 °C (Δ - 4.39 ± 0.81 vs. - 6.21 ± 1.32 °C, P = 0.002) and 18 °C (Δ - 2.48 ± 0.71 vs. - 3.54 ± 0.88 °C, P = 0.003). These findings were also observed in the 2nd half for the 2 °C (Δ - 4.36 ± 1.03 vs. - 6.26 ± 1.04 °C, P = 0.002) and 18 °C (Δ - 2.85 ± 0.57 vs. - 4.06 ± 1 °C, P = 0.018) conditions. In addition, core temperature declined less in HEAT compared to CON following the 1st (Δ - 0.41 ± 0.25 vs. - 0.84 ± 0.41 °C, P = 0.037) and 2nd (Δ - 0.25 ± 0.33 vs. - 0.64 ± 0.34 °C, P = 0.028) halves of passive rest in 2 °C, with no differences in the 18 °C condition. Perceptual data confirmed that participants were more comfortable in HEAT vs. CON in 2 °C (P < 0.01). CONCLUSIONS: Following active warm-ups, heated trousers attenuate the decline in muscle temperature in ambient and cold environments.


Assuntos
Temperatura Alta , Futebol , Humanos , Futebol/fisiologia , Masculino , Adulto , Regulação da Temperatura Corporal/fisiologia , Temperatura Corporal/fisiologia , Exercício de Aquecimento/fisiologia , Adulto Jovem , Músculo Esquelético/fisiologia , Vestuário
2.
BMC Sports Sci Med Rehabil ; 14(1): 154, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35964115

RESUMO

BACKGROUND: Prior to exercise, a warm-up routine has been suggested to be an imperative factor in task readiness with the anticipation that it will enhance performance. One of the key benefits of a warm-up is the increase in muscle and core temperature, which can be achieved in a variety of ways. An effective way to achieve improvements in core and muscle temperature is by performing an active warm-up. However, lengthy transition periods between an active warm-up and exercise performance are known to cause a decline in core and muscle temperature, thereby reducing performance capability. As such, methods are needed to assist athletes during transition periods, to maintain the benefits of a warm-up with the aim of optimising performance. Accordingly, the purpose of this review is to systematically analyse the evidence base that has investigated the use of passive heating to aide sporting performance when a transition period is experienced. METHODS: A systematic review and meta-analysis were undertaken following relevant studies being identified using PubMed, Web of Science, and EBSCO. Studies investigating the effects of passive heating strategies during the transition period between an active warm-up and exercise performance were included. The quality of the included studies were assessed by two independent reviewers using a modified version of the Physiotherapy Evidence Database scale. RESULTS: Seven studies, all high quality (mean = 7.6), reported sufficient data (quality score > 5) on the effects of passive heating strategies on exercise performance, these studies consisted of 85 well-trained athletes (78 male and 7 female). Passive heating strategies used between an active warm-up and exercise, significantly increased peak power output in all studies (ES = 0.54 [95% CI 0.17 to 0.91]). However, only a favourable trend was evident for exercise performance (ES = 1.07 [95% CI - 0.64 to 0.09]). CONCLUSIONS: Based upon a limited number of well-conducted, randomised, controlled trials, it appears that passive heating strategies used between an active warm-up and exercise have a positive impact on peak power output. Although, additional research is necessary to determine the optimum procedure for passive warm-up strategies.

3.
Nutrients ; 14(4)2022 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35215430

RESUMO

BACKGROUND: Food high in (poly)phenolic compounds, such as anthocyanins, have the potential to improve exercise recovery and exercise performance. Haskap berries are rich in anthocyanins, but no research has examined the potential to improve human performance. The aim of this study was to determine the influence of Haskap berry on parameters of endurance running performance. METHODS: Using a double-blind, placebo controlled, independent groups design, 30 male recreational runners (mean ± SD age, 33 ± 7 years; stature, 178.2 ± 7.2 cm; mass, 77.7 ± 10.6 kg; V˙O2peak, 52.2 ± 6.6 mL/kg/min) volunteered to participate. Following familiarisation, volunteers visited the laboratory twice (separated by seven days) to assess submaximal, maximal and 5 km time trial running performance. After the first visit, volunteers were randomly assigned to consume either the Haskap berry intervention or an isocaloric placebo control. RESULTS: There were modest changes in heart rate and V˙O2 at submaximal intensities (p < 0.05). Time to exhaustion during the V˙O2peak test was longer in the Haskap group by 20 s (p = 0.031). Additionally, 5 km time trial performance was improved in the Haskap group by ~21 s (p = 0.016), which equated to a 0.25 km/h increase in mean running speed compared to the placebo control; this represented a >2% improvement in running performance. CONCLUSIONS: The application of this newly identified functional food to athletes has the capacity to improve endurance running performance.


Assuntos
Lonicera , Corrida , Adulto , Antocianinas , Método Duplo-Cego , Ingestão de Alimentos , Frutas , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Resistência Física/fisiologia , Corrida/fisiologia
4.
Int J Sports Physiol Perform ; 16(1): 103-109, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32311675

RESUMO

PURPOSE: Rowers can be in marshaling areas for up to 20 to 25 min before the start of a race, which likely negates any benefits of an active warm-up, especially in cold environments. It is unknown if using a heated jacket following a standardized rowing warm-up can improve 2000-m rowing performance. METHODS: On 2 separate occasions, 10 trained male rowers completed a standardized rowing warm-up, followed by 25 min of passive rest before a 2000-m rowing time trial on a rowing ergometer. Throughout the passive rest, the participants wore either a standardized tracksuit top (CON) or an externally heated jacket (HEAT). The trials, presented in a randomized crossover fashion, were performed in a controlled environment (temperature 8°C, humidity 50%). Rowing time-trial performance, core body temperature, and mean skin temperature, along with perceptual variables, were measured. RESULTS: During the 25-min period, core body temperature increased in HEAT and decreased in CON (Δ0.54°C [0.74°C] vs -0.93°C [1.14°C]; P = .02). Additionally, mean skin temperature (30.22°C [1.03°C] vs 28.86°C [1.07°C]) was higher in HEAT versus CON (P < .01). In line with the physiological data, the perceptual data confirmed that participants were more comfortable in HEAT versus CON, and subsequently, rowing performance was improved in HEAT compared with CON (433.1 [12.7] s vs 437.9 [14.4] s, P < .01). CONCLUSION: The data demonstrate that an upper-body external heating garment worn following a warm-up can improve rowing performance in a cool environment.


Assuntos
Desempenho Atlético , Vestuário , Temperatura Baixa , Exercício de Aquecimento , Esportes Aquáticos , Humanos , Masculino , Temperatura Cutânea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA