Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
N Engl J Med ; 376(25): 2427-2436, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28636855

RESUMO

BACKGROUND: Improved influenza vaccines are needed to control seasonal epidemics. This trial compared the protective efficacy in older adults of a quadrivalent, recombinant influenza vaccine (RIV4) with a standard-dose, egg-grown, quadrivalent, inactivated influenza vaccine (IIV4) during the A/H3N2-predominant 2014-2015 influenza season, when antigenic mismatch between circulating and vaccine influenza strains resulted in the reduced effectiveness of many licensed vaccines. METHODS: We conducted a randomized, double-blind, multicenter trial of RIV4 (45 µg of recombinant hemagglutinin [HA] per strain, 180 µg of protein per dose) versus standard-dose IIV4 (15 µg of HA per strain, 60 µg of protein per dose) to compare the relative vaccine efficacy against reverse-transcriptase polymerase-chain-reaction (RT-PCR)-confirmed, protocol-defined, influenza-like illness caused by any influenza strain starting 14 days or more after vaccination in adults who were 50 years of age or older. The diagnosis of influenza infection was confirmed by means of RT-PCR assay and culture of nasopharyngeal swabs obtained from participants with symptoms of an influenza-like illness. The primary end point was RT-PCR-confirmed, protocol defined, influenza-like illness between 14 days or more after vaccination and the end of the influenza season. RESULTS: A total of 9003 participants were enrolled and underwent randomization; 8855 (98.4%) received a trial vaccine and underwent an efficacy follow-up (the modified intention-to-treat population), and 8604 (95.6%) completed the per-protocol follow-up (the modified per-protocol population). Among RIV4 recipients, the RT-PCR-confirmed influenza attack rate was 2.2% (96 cases among 4303 participants) in the modified per-protocol population and 2.2% (96 cases among 4427 participants) in the modified intention-to-treat population. Among IIV4 recipients, the attack rate was 3.2% (138 cases among 4301 participants) in the modified per-protocol population and 3.1% (138 cases among 4428 participants) in the modified intention-to-treat population. A total of 181 cases of influenza A/H3N2, 47 cases of influenza B, and 6 cases of nonsubtypeable influenza A were detected. The probability of influenza-like illness was 30% lower with RIV4 than with IIV4 (95% confidence interval, 10 to 47; P=0.006) and satisfied prespecified criteria for the primary noninferiority analysis and an exploratory superiority analysis of RIV4 over IIV4. The safety profiles of the vaccines were similar. CONCLUSIONS: RIV4 provided better protection than standard-dose IIV4 against confirmed influenza-like illness among older adults. (Funded by Protein Sciences; ClinicalTrials.gov number, NCT02285998 .).


Assuntos
Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Idoso , Idoso de 80 Anos ou mais , Método Duplo-Cego , Feminino , Humanos , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza B/isolamento & purificação , Vacinas contra Influenza/efeitos adversos , Masculino , Pessoa de Meia-Idade , Nasofaringe/virologia , Modelos de Riscos Proporcionais , Resultado do Tratamento , Vacinas de Produtos Inativados/imunologia , Vacinas Sintéticas/imunologia
2.
J Infect Dis ; 216(10): 1219-1226, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-28968871

RESUMO

Background: Seasonal influenza vaccines are transitioning to quadrivalent formulations including the hemagglutinins of influenza A subtypes H1N1 and H3N2 and B lineages Yamagata and Victoria. Methods: A new quadrivalent recombinant influenza vaccine (RIV4) was compared directly with a standard-dose, egg-grown, quadrivalent-inactivated influenza vaccine (IIV4) for immunogenicity and safety in adults 18-49 years of age. The coprimary endpoints for noninferiority were hemagglutination inhibition seroconversion rates and postvaccination geometric mean titer ratios for each antigen using US regulatory criteria. Reactogenicity solicited for 7 days, other safety events collected for 28 days, and serious or medically attended adverse events collected for 6 months after vaccination comprised the safety evaluation. Results: The immunogenicity of RIV4 was comparable to that of IIV4; the coprimary noninferiority criteria were met for 3 antigens, and the antibody responses to the fourth antigen, influenza B/Brisbane/60/2008, were low in each group, making comparisons uninterpretable. Systemic and injection site reactions were mild, transient, and similar in each group, whereas none of the spontaneously reported adverse events, serious or nonserious, were considered related to study vaccine. Conclusions: This first head-to-head comparison of recombinant versus inactivated quadrivalent influenza vaccines in 18-49 year old adults showed comparable immunogenicity, safety, and tolerability for both vaccines.


Assuntos
Imunogenicidade da Vacina/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/efeitos adversos , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Vacinas de Produtos Inativados/efeitos adversos , Vacinas de Produtos Inativados/imunologia , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/imunologia , Adolescente , Adulto , Formação de Anticorpos/imunologia , Feminino , Voluntários Saudáveis , Humanos , Vacinas contra Influenza/administração & dosagem , Influenza Humana/epidemiologia , Masculino , Pessoa de Meia-Idade , Vacinas de Produtos Inativados/administração & dosagem , Vacinas Sintéticas/administração & dosagem , Adulto Jovem
3.
Biotechnol Bioeng ; 112(11): 2267-75, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25943562

RESUMO

Dissolved carbon dioxide (dCO2 ) accumulation during cell culture has been recognized as an important parameter that needs to be controlled for successful scale-up of animal cell culture because above a certain concentration there are adverse effects on cell growth performance and protein production. We investigated the effect of accumulation of dCO2 in bioreactor cultures of expresSF+(®) insect cells infected with recombinant baculoviruses expressing recombinant influenza virus hemagglutinins (rHA). Different strategies for bioreactor cultures were used to obtain various ranges of concentrations of dCO2 (<50, 50-100, 100-200, and >200 mmHg) and to determine their effects on recombinant protein production and cell metabolic activity. We show that the accumulation of dCO2 at levels > 100 mmHg resulted in reduced metabolic activity, slowed cell growth, prolonged culture viability after infection, and decreased infection kinetics. The reduced rHA yields were not caused by the decrease in the extracellular pH that resulted from dCO2 accumulation, but were most likely due to the effect of dCO2 accumulation in cells. The results obtained here at the 2 L scale have been used for the design of large-scale processes to manufacture the rHA based recombinant vaccine Flublok™ at the 2500 L scale Biotechnol. Bioeng. 2015;112: 2267-2275. © 2015 Wiley Periodicals, Inc.


Assuntos
Dióxido de Carbono/análise , Meios de Cultura/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vacinas contra Influenza/metabolismo , Animais , Reatores Biológicos , Linhagem Celular , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Concentração de Íons de Hidrogênio , Vacinas contra Influenza/genética , Insetos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vacinas Sintéticas/genética , Vacinas Sintéticas/metabolismo
4.
BMC Biotechnol ; 14: 111, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25540031

RESUMO

BACKGROUND: Recombinant hemagglutinin (rHA) is the active component in Flublok®; a trivalent influenza vaccine produced using the baculovirus expression vector system (BEVS). HA is a membrane bound homotrimer in the influenza virus envelope, and the purified rHA protein assembles into higher order rosette structures in the final formulation of the vaccine. During purification and storage of the rHA, disulfide mediated cross-linking of the trimers within the rosette occurs and results in reduced potency. Potency is measured by the Single Radial Immuno-diffusion (SRID) assay to determine the amount of HA that has the correct antigenic form. RESULTS: The five cysteine residues in the transmembrane (TM) and cytoplasmic (CT) domains of the rHA protein from the H3 A/Perth/16/2009 human influenza strain have been substituted to alanine and/or serine residues to produce three different site directed variants (SDVs). These SDVs have been evaluated to determine the impact of the TM and CT cysteines on potency, cross-linking, and the biochemical and biophysical properties of the rHA. Modification of these cysteine residues prevents disulfide bond cross-linking in the TM and CT, and the resulting rHA maintains potency for at least 12 months at 25 °C. The strategy of substituting TM and CT cysteines to prevent potency loss has been successfully applied to another H3 rHA protein (from the A/Texas/50/2012 influenza strain) further demonstrating the utility of the approach. CONCLUSION: rHA potency can be maintained by preventing non-specific disulfide bonding and cross-linked multimer formation. Substitution of carboxy terminal cysteines is an alternative to using reducing agents, and permits room temperature storage of the vaccine.


Assuntos
Cisteína/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/química , Vacinas contra Influenza/imunologia , Influenza Humana/virologia , Animais , Cisteína/genética , Cisteína/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A/química , Vírus da Influenza A/genética , Vacinas contra Influenza/genética , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
5.
Methods Mol Biol ; 2829: 3-11, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951323

RESUMO

Healthy insect cell cultures are critical for any method described in this book, including making productive baculovirus banks, protein or AAV expression, and determining viral titers. This chapter describes cell maintenance in shake flasks using serum-free conditions and the expansion of virus stocks from a single plaque purified virus. Insect cells can be passaged over multiple generations, but as the cells may undergo changes over multiple passages, limiting the use of your cells to a defined number of passages such as 50 passages is recommendable. Baculovirus stocks once created using serum-free media are not very stable at 4-8 °C. This chapter also includes a simple method to store cells from an early cell passage and your virus stock in liquid nitrogen.


Assuntos
Baculoviridae , Técnicas de Cultura de Células , Animais , Baculoviridae/genética , Técnicas de Cultura de Células/métodos , Insetos/virologia , Insetos/citologia , Linhagem Celular
6.
BMC Biotechnol ; 12: 77, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23110350

RESUMO

BACKGROUND: The recent H1N1 influenza pandemic illustrated the shortcomings of the vaccine manufacturing process. The A/California/07/2009 H1N1 pandemic influenza vaccine or A(H1N1)pdm09 was available late and in short supply as a result of delays in production caused by low yields and poor antigen stability. Recombinant technology offers the opportunity to shorten manufacturing time. A trivalent recombinant hemagglutinin (rHA) vaccine candidate for seasonal influenza produced using the baculovirus expression vector system (BEVS) was shown to be as effective and safe as egg-derived trivalent inactivated vaccine (TIV) in human clinical studies. In this study, we describe the characterization of the A/California/07/2009 rHA protein and compare the H1N1 pandemic rHA to other seasonal rHA proteins. RESULTS: Our data show that, like other rHA proteins, purified A/California/07/2009 rHA forms multimeric rosette-like particles of 20-40 nm that are biologically active and immunogenic in mice as assayed by hemagglutination inhibition (HAI) antibody titers. However, proteolytic digest analysis revealed that A/California/07/2009 rHA is more susceptible to proteolytic degradation than rHA proteins derived from other seasonal influenza viruses. We identified a specific proteolytic site conserved across multiple hemagglutinin (HA) proteins that is likely more accessible in A/California/07/2009 HA, possibly as a result of differences in its protein structure, and may contribute to lower antigen stability. CONCLUSION: We conclude that, similar to the recombinant seasonal influenza vaccine, recombinant A(H1N1)pdm09 vaccine is likely to perform comparably to licensed A(H1N1)pdm09 vaccines and could offer manufacturing advantages.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H1N1/metabolismo , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Pandemias , Sequência de Aminoácidos , Antígenos/genética , Antígenos/imunologia , Antígenos/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Influenza Humana/epidemiologia , Luz , Dados de Sequência Molecular , Estabilidade Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espalhamento de Radiação , Alinhamento de Sequência
7.
J Invertebr Pathol ; 107 Suppl: S31-41, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21784229

RESUMO

The viral surface protein hemagglutinin (HA) has been recognized as a key antigen in the host response to influenza virus in both natural infection and vaccination because neutralizing antibodies directed against HA can mitigate or prevent infection. The baculovirus-insect cell system can be used for the production of recombinant HA molecules and is suitable for influenza vaccine production where annual adjustment of the vaccine is required. This expression system is generally considered safe with minimal potential for growth of human pathogens. Extensive characterization of this novel cell substrate has been performed, none of which has revealed the presence of adventitious agents. Multiple clinical studies have demonstrated that the vaccine is safe, well-tolerated and immunogenic. The baculovirus-insect cell system could, therefore, be used for the expedited production of a safe and efficacious influenza vaccine. As a result, this technology should provide a fast track worldwide solution for newly emerging influenza strains or pandemic preparedness within a few years.


Assuntos
Baculoviridae/imunologia , Vacinas contra Influenza/imunologia , Orthomyxoviridae/imunologia , Animais , Baculoviridae/genética , Regulação Viral da Expressão Gênica , Hemaglutininas/imunologia , Humanos , Vacinas contra Influenza/farmacologia , Influenza Humana/prevenção & controle , Insetos/virologia , Orthomyxoviridae/genética , Pandemias/prevenção & controle , Proteínas Recombinantes , Fatores de Tempo , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
8.
Vaccines (Basel) ; 9(12)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34960250

RESUMO

The insect cell expression system has previously been proposed as the preferred biosecurity strategy for production of any vaccine, particularly for future influenza pandemic vaccines. The development and regulatory risk for new vaccine candidates is shortened as the platform is already in use for the manufacturing of the FDA-licensed seasonal recombinant influenza vaccine Flublok®. Large-scale production capacity is in place and could be used to produce other antigens as well. However, as demonstrated by the 2019 SARS-CoV-2 pandemic the insect cell expression system has limitations that need to be addressed to ensure that recombinant antigens will indeed play a role in combating future pandemics. The greatest challenge may be the ability to produce an adequate quantity of purified antigen in an accelerated manner. This review summarizes recent innovations in technology areas important for enhancing recombinant-protein production levels and shortening development timelines. Opportunities for increasing product concentrations through vector development, cell line engineering, or bioprocessing and for shortening timelines through standardization of manufacturing processes will be presented.

9.
Adv Biochem Eng Biotechnol ; 175: 71-92, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-29886511

RESUMO

The insect cell-baculovirus expression system technology (BEST) has a prominent role in producing recombinant proteins to be used as research and diagnostic reagents and vaccines. The glycosylation profile of proteins produced by the BEST is composed predominantly of terminal mannose glycans, and, in Trichoplusia ni cell lines, core α3 fucosylation, a profile different to that in mammals. Insects contain all the enzymatic activities needed for complex N- and O-glycosylation and sialylation, although few reports of complex glycosylation and sialylation by the BEST exist. The insect cell line and culture conditions determine the glycosylation profile of proteins produced by the BEST. The promoter used, dissolved oxygen tension, presence of sugar precursors, bovine serum or hemolymph, temperature, and the time of harvest all influence glycosylation, although more research is needed. The lack of activity of glycosylation enzymes possibly results from the transcription regulation and stress imposed by baculovirus infection. To solve this limitation, the glycosylation pathway of insect cells has been engineered to produce complex sialylated glycans and to eliminate α3 fucosylation, either by generating transgenic cell lines or by using baculovirus vectors. These strategies have been successful. Complex glycosylation, sialylation, and inhibition of α3 fucosylation have been achieved, although the majority of glycans still have terminal mannose residues. The implication of insect glycosylation in the proteins produced by the BEST is discussed. Graphical Abstract.


Assuntos
Baculoviridae , Insetos , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Bovinos , Glicosilação , Insetos/metabolismo , Proteínas Recombinantes/genética , Tecnologia
10.
Biologicals ; 37(3): 182-9, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19297194

RESUMO

FluBlok, a recombinant trivalent hemagglutinin (rHA) vaccine produced in insect cell culture using the baculovirus expression system, provides an attractive alternative to the current egg-based trivalent inactivated influenza vaccine (TIV). Its manufacturing process presents the possibility for safe and expeditious vaccine production. FluBlok contains three times more HA than TIV and does not contain egg-protein or preservatives. The high purity of the antigen enables administration at higher doses without a significant increase in side-effects in human subjects. The insect cell-baculovirus production technology is particularly suitable for influenza where annual adjustment of the vaccine is required. The baculovirus-insect expression system is generally considered a safe production system, with limited growth potential for adventitious agents. Still regulators question and challenge the safety of this novel cell substrate as FluBlok continues to advance toward product approval. This review provides an overview of cell substrate characterization for expresSF cell line used for the manufacturing of FluBlok. In addition, this review includes an update on the clinical development of FluBlok. The highly purified protein vaccine, administered at three times higher antigen content than TIV, is well tolerated and results in stronger immunogenicity, a long lasting immune response and provides cross-protection against drift influenza viruses.


Assuntos
Vacinas contra Influenza/genética , Insetos/genética , Vacinas Sintéticas/genética , Animais
11.
Curr Opin Mol Ther ; 10(1): 56-61, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18228182

RESUMO

The baculovirus insect cell production technology allows for rapid vaccine production and is particularly suitable for influenza vaccines where annual adjustment of the composition is required. Recombinant hemagglutinin produced using this technology is safe, immunogenic and effective in preventing cell-culture confirmed influenza in individuals; recombinant neuraminidase may play a role as an additive to improve the currently licensed influenza vaccines. Universal vaccine candidates, such as matrix protein M2 and nucleocapsid protein, are yet to enter the clinic whereas the first pandemic influenza virus-like particle (VLP) vaccine candidate is in clinical development. This review presents an overview of the use of this production system for the development of various influenza vaccine targets, including hemagglutinin, neuraminidase, M2, nucleoprotein and VLPs containing multiple influenza proteins. The development progress and the advantages and disadvantages of each vaccine candidate are discussed.


Assuntos
Baculoviridae/imunologia , Vacinas contra Influenza/imunologia , Orthomyxoviridae/imunologia , Animais , Humanos , Vacinas de DNA/imunologia , Proteínas Virais/imunologia , Vírion/imunologia
12.
Hum Vaccin Immunother ; 13(6): 1-11, 2017 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-28301280

RESUMO

Timely vaccine supply is critical during influenza pandemics but is impeded by current virus-based manufacturing methods. The 2009 H1N1/2009pdm 'swine flu' pandemic reinforced the need for innovation in pandemic vaccine design. We report on insights gained during rapid development of a pandemic vaccine based on recombinant haemagglutinin (rHA) formulated with Advax™ delta inulin adjuvant (Panblok-H1/Advax). Panblok-H1/Advax was designed and manufactured within 1 month of the pandemic declaration by WHO and successfully entered human clinical testing in under 3 months from first isolation and sequencing of the novel pandemic virus, requiring several major challenges to be overcome. Panblok-H1/Advax successfully induced neutralising antibodies against the pandemic strain, but also induced cross-neutralising antibodies in a subset of subjects against an H1N1 strain (A/Puerto Rico/8/34) derived from the 1918 Spanish flu, highlighting the possibility to use Advax to induce more broadly cross-protective antibody responses. Interestingly, the rHA from H1N1/2009pdm exhibited variants in the receptor binding domain that had a major impact on receptor binding and hemagglutination ability. We used an in silico structural modeling approach to better understand the unusual behavior of the novel hemagglutinin, thereby demonstrating the power of computational modeling approaches for rapid characterization of new pandemic viruses. While challenges remain in ensuring ultrafast vaccine access for the entire population in response to future pandemics, the adjuvanted recombinant Panblok-H1/Advax vaccine proved its utility during a real-life pandemic situation.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Inulina/análogos & derivados , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Reações Cruzadas , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Vacinas contra Influenza/isolamento & purificação , Inulina/administração & dosagem , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Conformação Proteica , Tecnologia Farmacêutica/métodos , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/isolamento & purificação , Adulto Jovem
13.
mSphere ; 2(6)2017.
Artigo em Inglês | MEDLINE | ID: mdl-29242836

RESUMO

Human influenza virus infections with avian subtype H7N9 viruses are a major public health concern and have encouraged the development of effective H7 prepandemic vaccines. In this study, baseline and postvaccination serum samples of individuals aged 18 years and older who received a recombinant H7 hemagglutinin vaccine with and without an oil-in-water emulsion (SE) adjuvant were analyzed using a panel of serological assays. While only a small proportion of individuals seroconverted to H7N9 as measured by the conventional hemagglutination inhibition assay, our data show strong induction of anti-H7 hemagglutinin antibodies as measured by an enzyme-linked immunosorbent assay (ELISA). In addition, cross-reactive antibodies against phylogenetically distant group 2 hemagglutinins were induced, presumably targeting the conserved stalk domain of the hemagglutinin. Further analysis confirmed an induction of stalk-specific antibodies, suggesting that epitopes outside the classical antigenic sites are targeted by this vaccine in the context of preexisting immunity to related H3 hemagglutinin. Antibodies induced by H7 vaccination also showed functional activity in antibody-dependent cell-mediated cytotoxicity reporter assays and microneutralization assays. Additionally, our data show that sera from hemagglutination inhibition seroconverters conferred protection in a passive serum transfer experiment against lethal H7N9 virus challenge in mice. Interestingly, sera from hemagglutination inhibition nonseroconverters also conferred partial protection in the lethal animal challenge model. In conclusion, while recombinant H7 vaccination fails to induce measurable levels of hemagglutination-inhibiting antibodies in most subjects, this vaccination regime induces homosubtypic and heterosubtypic cross-reactive binding antibodies that are functional and partly protective in a murine passive transfer challenge model. IMPORTANCE Zoonotic infections with high case fatality rates caused by avian H7N9 influenza viruses have been reported since early 2013 in China. Since then, the fifth wave of the H7N9 epidemic emerged in China, resulting in higher numbers of laboratory-confirmed cases than in previous years. Recently, H7N9 has started to antigenically drift and split into two new lineages, the Pearl River Delta and Yangtze River Delta clades, which do not match stockpiled H7 vaccines well. Humans are immunologically naive to these subtypes, and an H7N9 strain that acquires the capability of efficient human-to-human transmission poses a credible pandemic threat. Other characteristics of H7N9 are raising concerns as well, like its ability to bind to receptors in the human upper respiratory tract, the recent emergence of highly pathogenic variants, and the ability to quickly gain resistance to neuraminidase inhibitors. Therefore, developing and testing H7N9 vaccines constitutes a priority for pandemic preparedness.

14.
J Chromatogr A ; 1136(1): 48-56, 2006 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-17046775

RESUMO

The influenza virus surface glycoprotein antigen neuraminidase (NA) is a crucial viral enzyme with many potential medical applications; therefore, the development of efficient upstream and downstream processing strategy for the expression and purification of NA is of high importance. In the present work the NA gene from the H1N1 influenza virus strain A/Beijing/262/95 was cloned from viral RNA and expressed in expresSF+ insect cells using the baculovirus expression vector system (BVES). A limited affinity-ligand library was synthesized and evaluated for its ability to bind and purify the recombinant H1N1 neuraminidase. Affinity-ligand design was based on mimicking the interactions of the lock-and-key (LAK) motif (Phe-Gly-Gln), a common structural moiety found in the subunit interface of glutathione S-transferase I (GST I), and plays an important structural role in subunit-subunit recognition. Solid-phase combinatorial chemistry was used to synthesize 13 variants of the lock-and-key lead ligand (Phe-Trz-X, where X was selected alpha-amino acid) using the 1,3,5-triazine moiety (Trz) as the scaffold for assembly. One immobilized ligand, bearing phenylalanine and isoleucine linked on the chlorotriazine ring (Phe-Trz-Ile), displayed high affinity for NA. Absorption equilibrium and molecular modeling studies were carried out to provide a detailed picture of Phe-Trz-Ile interaction with NA. This LAK-mimetic affinity adsorbent was exploited in the development of a facile purification protocol for NA, which led to 335-fold purification in a single-step. The present purification procedure is the most efficient reported so far for recombinant NA.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/síntese química , Neuraminidase/isolamento & purificação , Vacinas Sintéticas/imunologia , Adsorção , Marcadores de Afinidade , Animais , Sequência de Bases , Clonagem Molecular , Primers do DNA , Vírus da Influenza A Subtipo H1N1/enzimologia , Vacinas contra Influenza/imunologia , Insetos , Modelos Moleculares , Mimetismo Molecular , Neuraminidase/genética , Neuraminidase/imunologia
15.
mBio ; 7(1): e01996-15, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26787832

RESUMO

UNLABELLED: Influenza remains a major global health burden. Seasonal vaccines offer protection but can be rendered less effective when the virus undergoes extensive antigenic drift. Antibodies that target the highly conserved hemagglutinin stalk can protect against drifted viruses, and vaccine constructs designed to induce such antibodies form the basis for a universal influenza virus vaccine approach. In this study, we analyzed baseline and postvaccination serum samples of children (6 to 59 months), adults (18 to 49 years), and elderly individuals (≥65 years) who participated in clinical trials with a recombinant hemagglutinin-based vaccine. We found that baseline IgG and IgA antibodies against the H1 stalk domain correlated with the ages of patients. Children generally had very low baseline titers and did not respond well to the vaccine in terms of making stalk-specific antibodies. Adults showed the highest induction of stalk-specific antibodies, but the elderly had the highest absolute antibody titers against the stalk. Importantly, the stalk antibodies measured by enzyme-linked immunosorbent assay (ELISA) showed neutralizing activity in neutralization assays and protected mice in a passive-transfer model in a stalk titer-dependent manner. Finally, we found similar patterns of stalk-specific antibodies directed against the H3 and influenza B virus hemagglutinins, albeit at lower levels than those measured against the H1 stalk. The relatively high levels of stalk-specific antibodies in the elderly patients may explain the previously reported low influenza virus infection rates in this age group. (This study has been registered at ClinicalTrials.gov under registration no. NCT00336453, NCT00539981, and NCT00395174.) IMPORTANCE: The present study provides evidence that titers of broadly neutralizing hemagglutinin stalk-reactive antibodies increase with age, possibly due to repeated exposure to divergent influenza viruses. These relatively high levels of antistalk titers may be responsible for lower circulation rates of influenza viruses in older individuals. Our findings suggest that the level of antistalk antibodies is a good surrogate marker for protection against influenza virus infection. In addition, the levels of antistalk antibodies might determine the breadth of protection against different drifted strains.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Isotipos de Imunoglobulinas/imunologia , Orthomyxoviridae/imunologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Animais , Pré-Escolar , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Humanos , Imunização Passiva , Lactente , Pessoa de Meia-Idade , Testes de Neutralização , Infecções por Orthomyxoviridae/prevenção & controle , Adulto Jovem
16.
Curr Opin Mol Ther ; 7(1): 24-9, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15732526

RESUMO

An overview of influenza vaccines in development is provided, with an emphasis on new cell-based protein vaccine candidates. The current licensed vaccine is a cost-effective means to reduce the impact of influenza with a known mechanism of action. Most vaccine companies are focusing on the production of whole influenza viruses in various cell lines to replace egg-based manufacturing technology. Only a limited number of targets have been identified for the development of cell-based protein influenza vaccines. They include hemagglutinin, neuraminidase, M2 and nucleocapsid protein. These protein-based vaccine candidates are discussed, along with their progress in clinical development and the advantages and disadvantages of each vaccine approach.


Assuntos
Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Animais , Humanos , Neuraminidase/imunologia , Proteínas do Nucleocapsídeo , Nucleoproteínas/imunologia , Proteínas Recombinantes/imunologia , Proteínas do Core Viral/imunologia , Proteínas da Matriz Viral/imunologia , Proteínas Virais/imunologia
17.
Yale J Biol Med ; 78(5): 321-8, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17132338

RESUMO

Pandemic influenza has become a high priority item for all public health authorities. An influenza pandemic is believed to be imminent, and scientists agree that it will be a matter of when, where, and what will be the causative agent. Recently, most attention has been directed to human cases of avian influenza caused by a H5N1 avian influenza virus. An effective vaccine will be needed to substantially reduce the impact of an influenza pandemic. Current influenza vaccine manufacturing technology is not adequate to support vaccine production in the event of an avian influenza outbreak, and it has now become clear that new innovative production technology is required. Antiviral drugs, on the other hand, can play a very important role in slowing the disease spread but are in short supply and resistance has been a major issue. Here, we provide an update on the status of pandemic vaccine development and antiviral drugs. Finally, we conclude with some proposed areas of focus in pandemic vaccine preparedness.


Assuntos
Antivirais/uso terapêutico , Surtos de Doenças/prevenção & controle , Vacinas contra Influenza/uso terapêutico , Influenza Humana/tratamento farmacológico , Influenza Humana/prevenção & controle , Humanos
18.
Ther Adv Vaccines ; 3(4): 97-108, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26478817

RESUMO

Flublok is the first recombinant hemagglutinin (HA) vaccine licensed by the US Food and Drugs Administration for the prevention of influenza in adults aged 18 and older. The HA proteins produced in insect cell culture using the baculovirus expression system technology are exact analogues of wild type circulating influenza virus HAs. The universal HA manufacturing process that has been successfully scaled to the 21,000L contributes to rapid delivery of a substantial number of doses. This review discusses the immunogenicity, efficacy and safety data from five pivotal clinical studies used to support licensure of trivalent Flublok for adults 18 years of age and older in the United States. The trial data demonstrate that the higher antigen content in Flublok results in improved immunogenicity. Data further suggest improved efficacy and a slightly lower local reactogenicity compared with standard inactivated influenza vaccine, despite the presence of more antigen (statistically significant). Flublok influenza vaccine can include HAs designed to mimic 'drift' in influenza viruses as the process of predicting antigenic drift advances and, at a minimum, could address late appearing influenza viruses. The implementation of the latter will require support from regulatory authorities.

19.
Vaccine ; 33(48): 6622-8, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26529070

RESUMO

BACKGROUND: The safety and tolerability of Flublok(®), a purified recombinant hemagglutinin seasonal influenza vaccine, was compared to AFLURIA(®) in a randomized, blinded clinical trial in adults ≥ 50 years of age with attention to hypersensitivity reactions. METHODS: This blinded, randomized trial of healthy adults ≥ 50 years of age compared safety of Flublok vs. AFLURIA with respect to pre-specified possible hypersensitivity: "rash," "urticaria," "swelling" and "non-dependent edema;" solicited reactogenicity and unsolicited adverse events. Subject-reported outcomes were collected for 30 days after vaccination. All adverse event terms were reviewed by physicians blinded to vaccine group, who added other terms possibly reflecting hypersensitivity. Case records of subjects with possible hypersensitivity were adjudicated by independent experts blinded to treatment assignment to identify likely hypersensitivity reactions. Non-inferiority of the incidence of hypersensitivity in the two vaccine groups was pre-defined as an absolute difference with an upper bound of 2-sided 95% confidence limits ≤ 0.015. RESULTS: A total of 2640 subjects were enrolled, evenly split in age cohorts of 50-64 and ≥ 65 years. Fifty-two subjects reported at least one term possibly representing hypersensitivity, with a slight imbalance of 31 on Flublok and 21 on AFLURIA. The adjudicators determined that six and four subjects on Flublok and AFLURIA, respectively, likely met clinical criteria for hypersensitivity, yielding a difference in incidence between the two vaccine groups of 0.15% (upper bound of 2-sided 95% CI=0.9%). Reactogenicity and overall adverse event profiles were similar across both vaccines. CONCLUSIONS: Flublok was non-inferior to AFLURIA in adults ≥ 50 years of age with respect to expert-adjudicated events of likely hypersensitivity during 30 days following vaccination (Sponsored by Protein Sciences Corporation; ClinicalTrials.gov number NCT01825200).


Assuntos
Hipersensibilidade/etiologia , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/sangue , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Feminino , Voluntários Saudáveis , Testes de Inibição da Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vacinas contra Influenza/efeitos adversos , Influenza Humana/prevenção & controle , Masculino , Pessoa de Meia-Idade , Vacinação
20.
Vaccine ; 33(44): 6011-6, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26409814

RESUMO

This study was designed to improve the stability of liquid formulations of recombinant influenza hemagglutinin (rHA) and to understand the mechanism of early loss of potency for rHA. The potency of rHA derived from several influenza strains was determined using single radial immunodiffusion (SRID), and the structure of the rHA was characterized using SDS-PAGE and dynamic light scattering. rHA formed disulfide cross-linked multimers, and potency decreased during extended storage. To reduce disulfide-mediated cross-linking and early potency loss, rHA was formulated with sodium thioglycolate (STG) and citrate. Addition of 80 mM STG and 55 mM sodium citrate inhibited disulfide-mediated cross-linking without affecting protein function for each rHA tested. The shelf life of the rHA formulation with STG-citrate, based on potency as determined by SRID, was extended as much as 20-fold, compared to a control formulation without STG-citrate. STG-citrate did not have a significant effect on the immunogenicity of H1 A/California/7/2009 rHA in mice.


Assuntos
Hemaglutininas/química , Hemaglutininas/imunologia , Vacinas contra Influenza/química , Tioglicolatos/química , Potência de Vacina , Animais , Anticorpos Antivirais/sangue , Difusão Dinâmica da Luz , Eletroforese em Gel de Poliacrilamida , Hemaglutininas/genética , Imunodifusão , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA