Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 50(1): 489-95, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26630087

RESUMO

The capture of carbon dioxide with chemical solvents is one solution to mitigate greenhouse gas emissions from anthropogenic sources and thus tackle climate change. Recent research has been focused on optimizing new kinds of advanced absorbents including aqueous amine blends, but critical downsides such as the large energetic cost involved with the industrial process remain. To address this issue, a better understanding of the energetic interactions existing in solution is necessary. In this paper, we report direct experimental measurements of the energy cost involved in the solvation of CO2 in two aqueous amine blends at different temperatures. The chemical solvents were designed as aqueous mixtures of commonly used primary and tertiary amines to study the influence of the different chemical properties inferred by the amine class. We have also applied a thermodynamic model to represent the energetic effects that take place in solution during CO2 dissolution in these mixtures, where all parameters were taken from previous studies focused on single amine absorbents. The noteworthy agreement observed with the reported experimental heats of absorption and with literature vapor liquid equilibrium properties confirmed the relevance of the underlying molecular mechanisms considered in our model, and suggest that this model would prove useful to investigate CO2 dissolution in other amine blends.


Assuntos
Aminas , Dióxido de Carbono , Mudança Climática , Modelos Teóricos , Termodinâmica , Aminas/análise , Aminas/química , Dióxido de Carbono/análise , Dióxido de Carbono/química , Efeito Estufa
2.
Chemphyschem ; 13(17): 3866-74, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23047473

RESUMO

A classical force field is proposed for the molecular simulation of primary alkanolamines containing a NH(2)-C-C-OH backbone. A method is devised to take into account the polar (H-bonding) environment of the alkanolamines by calculating electrostatic charges in the presence of explicit solvent molecules. The force field does not use a universal set of charges, but is rather constructed by following a general method for obtaining specific charges for the different alkanolamines. The model is parameterized on the two simplest primary alkanolamines and then validated by calculating thermodynamic properties of five other molecules. Experimental liquid densities and enthalpies of vaporization are also reported in order to complete existing literature data. The predicted ability of the force field is evaluated by comparing the simulation results with experimental densities and enthalpies of vaporization. Densities are predicted with an uncertainty of 1.5 % and enthalpies of vaporization with an uncertainty of 1 kJ mol(-1). A decomposition of the interaction energy into electrostatic and repulsive-dispersive interactions and an analysis of hydrogen-bond statistics lead to a complex picture. Some terms of these interactions are related to the molecular structure in a clear way, others are not. The results provide insights into the structure-property relations that contribute to a better description of the thermodynamic properties of alkanolamines.

3.
J Chem Theory Comput ; 10(6): 2471-8, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26580767

RESUMO

We report a transferable force field to describe the interactions of alkanolamines based on the N-C-C-O backbone with water, derived from a comparison with experimental excess enthalpies. This force field is tested on 2-aminoethan-1-ol (MEA), 2-amino-2-methylpropan-1-ol, 2-aminobutan-1-ol (ABU), and 1-aminopropan-2-ol. These alkanolamines are derivatives of MEA obtained by substitution with methyl and ethyl groups on the carbon atoms of the N-C-C-O backbone. A specific cross interaction site corresponding to the hydrogen bond between the hydroxyl group of the alkanolamine and the oxygen atom of water was introduced in order to reproduce quantitatively experimental excess enthalpies. The transferability of this specific site was assessed by predictions on alkanolamines that were not included in the parametrization data set. New data on enthalpy of mixing for ABU with water are reported, since they were not available in the literature. From the molecular simulations, several microscopic quantities of the alkanolamine-water mixtures were analyzed in order to improve our understanding of these systems. The structure of the solvation shells at varying compositions, statistics of hydrogen bonds, conformations, and energy decompositions served as bases for an interpretation of the molecular reasons underlying the behavior of the excess enthalpy. The prominent result is that water-water interactions play a major role in differentiating alkanolamine-water mixtures, which is a manifestation of the hydrophobic effect. Both the structural and energetic effects observed at the molecular level point to phenomena that have strong composition dependence, in particular, the interplay between the intramolecular hydrogen bond in the alkanolamine and the intermolecular hydrogen bonds with water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA