Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Biochim Biophys Acta ; 1844(9): 1560-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24862246

RESUMO

Apo-calmodulin, a small soluble mainly α protein, is a calcium-dependent protein activator. Calcium binding affects the calmodulin conformation but also its stability. Calcium free form unfolds between 40 and 80°C, whereas the calcium-saturated form is stable up to temperatures as high as 100°C, forbidding comparison of the thermal unfolding pathways of the two forms. Thus, this paper focuses especially on the conformation of pressure-induced unfolding states of both forms of calmodulin, by combining small-angle neutron scattering (SANS) with biophysical techniques such as tyrosines and ANS fluorescence. In contrast to heat denaturation (Gibrat et al., BBA, 2012), the pressure denaturation of calmodulin is reversible up to pressures of 3000bar (300MPa). A pressure-induced compact intermediate state has been found for the two calmodulin forms, but their unfolding pathways are different. A domain compaction and an increase of the ANS fluorescence of holo form have been evidenced. On the contrary, a domain dilatation and an ANS fluorescence decrease have been found for the apo form. The pressure induced an increase of the interdomain distance for both calmodulin forms, suggesting that the central linker of calmodulin is flexible in solution.


Assuntos
Apoproteínas/química , Cálcio/química , Calmodulina/química , Desdobramento de Proteína , Naftalenossulfonato de Anilina , Dicroísmo Circular , Corantes Fluorescentes , Humanos , Modelos Moleculares , Difração de Nêutrons , Pressão , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Proteínas Recombinantes/química , Espalhamento a Baixo Ângulo , Espectrometria de Fluorescência , Temperatura , Termodinâmica
2.
Biochim Biophys Acta ; 1824(10): 1097-106, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22709575

RESUMO

Apo-calmodulin, a small, mainly α, soluble protein is a calcium-dependent protein activator. It is made of two N- and C-terminal domains having a sequence homology of 70%, an identical folding but different stabilities, and is thus an interesting system for unfolding studies. The use of small angle neutron scattering (SANS) and other biophysical techniques has permitted to reveal conformational difference between native and thermal denatured states of apo-calmodulin. The results show that secondary and tertiary structures of apo-calmodulin evolve in a synchronous way, indicating the absence in the unfolding pathway of molten-globule state sufficiently stable to affect transition curves. From SANS experiments, at 85 °C, apo-calmodulin adopts a polymer chain conformation with some residual local structures. After cooling down, apo-calmodulin recovers a compact state, with a secondary structure close to the native one but with a higher radius of gyration and a different tyrosine environment. In fact on a timescale of few minutes, heat denaturation of apo-calmodulin is partially reversible, but on a time scale of hours (for SANS experiments), the long exposure to heat may lead to a non-reversibility due to some chemical perturbation of the protein. In fact, from Mass Spectrometry measurements, we got evidence of dehydration and deamidation of heated apo-calmodulin.


Assuntos
Calmodulina/química , Biofísica , Dicroísmo Circular , Difração de Nêutrons , Conformação Proteica , Espalhamento a Baixo Ângulo , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Termodinâmica
3.
Exp Cell Res ; 317(20): 2800-13, 2011 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21993218

RESUMO

Lamins A and C are nuclear intermediate filament proteins expressed in most differentiated somatic cells. Previous data suggested that prelamin A, the lamin A precursor, accumulates in some lipodystrophy syndromes caused by mutations in the lamin A/C gene, and binds and inactivates the sterol regulatory element binding protein 1 (SREBP1). Here we show that, in vitro, the tail regions of prelamin A, lamin A and lamin C bind a polypeptide of SREBP1. Such interactions also occur in HeLa cells, since expression of lamin tail regions impedes nucleolar accumulation of the SREBP1 polypeptide fused to a nucleolar localization signal sequence. In addition, the tail regions of A-type lamin variants that occur in Dunnigan-type familial partial lipodystrophy of (R482W) and Hutchison Gilford progeria syndrome (∆607-656) bind to the SREBP1 polypeptide in vitro, and the corresponding FLAG-tagged full-length lamin variants co-immunoprecipitate the SREBP1 polypeptide in cells. Overexpression of wild-type A-type lamins and variants favors SREBP1 polypeptide localization at the intranuclear periphery, suggesting its sequestration. Our data support the hypothesis that variation of A-type lamin protein level and spatial organization, in particular due to disease-linked mutations, influences the sequestration of SREBP1 at the nuclear envelope and thus contributes to the regulation of SREBP1 function.


Assuntos
Lamina Tipo A/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Células HeLa , Humanos , Lamina Tipo A/genética , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/metabolismo , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Peptídeos/metabolismo , Progéria/genética , Progéria/metabolismo , Ligação Proteica , Precursores de Proteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
4.
Biochemistry ; 50(29): 6409-22, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-21714500

RESUMO

Cdc31, the Saccharomyces cerevisiae centrin, is an EF-hand calcium-binding protein essential for the cell division and mRNA nuclear export. We used biophysical techniques to investigate its calcium, magnesium, and protein target binding properties as well as their conformations in solution. We show here that Cdc31 displays one Ca(2+)/Mg(2+) mixed site in the N-terminal domain and two low-affinity Ca(2+) sites in the C-terminal domain. The affinity of Cdc31 for different natural target peptides (from Kar1, Sfi1, Sac3) that we obtained by isothermal titration calorimetry shows weakly Ca(2+), but also Mg(2+) dependence. The characteristics of target surface binding were shown to be similar; we highlight that the 1-4 hydrophobic amino acid motif, in a stable amphipathic α-helix, is critical for binding. Ca(2+) and Mg(2+) binding increase the α-helix content and stabilize the structure. Analysis of small-angle X-ray scattering experiments revealed that N- and C-terminal domains are not individualized in apo-Cdc31; in contrast, they are separated in the Mg(2+) state, creating a groove in the middle of the molecule that is occupied by the target peptide in the liganded form. Consequently, Mg(2+) seems to have consequences on Cdc31's function and could be important to stimulate interactions in resting cells.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Magnésio/metabolismo , Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Proteínas de Ligação ao Cálcio/química , Calorimetria , Proteínas de Ciclo Celular/química , Dicroísmo Circular , Cristalografia por Raios X , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Ligação Proteica , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química , Alinhamento de Sequência , Termodinâmica
5.
BMC Struct Biol ; 11: 24, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21569443

RESUMO

BACKGROUND: Disrupting protein-protein interactions by small organic molecules is nowadays a promising strategy employed to block protein targets involved in different pathologies. However, structural changes occurring at the binding interfaces make difficult drug discovery processes using structure-based drug design/virtual screening approaches. Here we focused on two homologous calcium binding proteins, calmodulin and human centrin 2, involved in different cellular functions via protein-protein interactions, and known to undergo important conformational changes upon ligand binding. RESULTS: In order to find suitable protein conformations of calmodulin and centrin for further structure-based drug design/virtual screening, we performed in silico structural/energetic analysis and molecular docking of terphenyl (a mimicking alpha-helical molecule known to inhibit protein-protein interactions of calmodulin) into X-ray and NMR ensembles of calmodulin and centrin. We employed several scoring methods in order to find the best protein conformations. Our results show that docking on NMR structures of calmodulin and centrin can be very helpful to take into account conformational changes occurring at protein-protein interfaces. CONCLUSIONS: NMR structures of protein-protein complexes nowadays available could efficiently be exploited for further structure-based drug design/virtual screening processes employed to design small molecule inhibitors of protein-protein interactions.


Assuntos
Cálcio/química , Calmodulina/química , Combinação Trimetoprima e Sulfametoxazol/química , Sequência de Aminoácidos , Sítios de Ligação , Calmodulina/antagonistas & inibidores , Simulação por Computador , Desenho de Fármacos , Humanos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica , Combinação Trimetoprima e Sulfametoxazol/antagonistas & inibidores
6.
Biochemistry ; 49(4): 761-71, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20028137

RESUMO

NADPH oxidases (NOX) are important superoxide producing enzymes that regulate a variety of physiological and pathological processes such as bacteria killing, angiogenesis, sperm-oocyte fusion, and oxygen sensing. NOX5 is a member of the NOX family but distinct from the others by the fact that it contains a long N-terminus with four EF-hand Ca(2+)-binding sites (NOX5-EF). NOX5 generates superoxide in response to intracellular Ca(2+) elevation in vivo and in a cell-free system. Previously, we have shown that the regulatory N-terminal EF-hand domain interacts directly and in a Ca(2+)-dependent manner with the catalytic C-terminal catalytic dehydrogenase domain (CDHD) of the enzyme, leading to its activation. Here we have characterized the interaction site for the regulatory NOX5-EF in the catalytic CDHD of NOX5 using cloned fragments and synthetic peptides of the CDHD. The interaction was monitored with pull-down techniques, cross-linking experiments, tryptophan fluorescence, hydrophobic exposure, isothermal titration calorimetry, and cell-free system enzymatic assays. This site is composed of two short segments: the 637-660 segment, referred to as the regulatory EF-hand-binding domain (REFBD), and the 489-505 segment, previously identified as the phosphorylation region (PhosR). NOX5-EF binds to these two segments in a Ca(2+)-dependent way, and the superoxide generation by NOX5 depends on this interaction. Controlled proteolysis suggests that the REFBD is autoinhibitory and inhibition is relieved by NOX5-EF.


Assuntos
Cálcio/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , NADPH Oxidases/química , NADPH Oxidases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cálcio/química , Domínio Catalítico , Linhagem Celular , Motivos EF Hand , Humanos , Dados de Sequência Molecular , NADPH Oxidase 5 , Conformação Proteica , Transfecção
7.
Biochemistry ; 49(20): 4383-94, 2010 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-20408559

RESUMO

Centrins are calcium binding proteins that belong to the EF-hand (or calmodulin) superfamily, which are highly conserved among eukaryotes. Herein, we report the molecular features and binding properties of the green alga Scherffelia dubia centrin (SdCen), a member of the Chlamydomonas reinhardtii centrin (CrCen) subfamily. The Ca(2+) binding capacity of SdCen and its isolated N- and C-terminal domains (N-SdCen and C-SdCen, respectively) was investigated using flow dialysis and isothermal titration calorimetry. In contrast with human centrin 1 and 2 (from the same subfamily), but like CrCen, SdCen exhibits three physiologically significant Ca(2+) binding sites, two in the N-terminal domain and one in the C-terminal domain. Mg(2+) ions could compete with Ca(2+) in one of the N-terminal sites. When Ca(2+) binds, the N-terminal domain becomes more stable and exposes a significant hydrophobic surface that binds hydrophobic fluorescent probes. The Ca(2+) binding properties and the metal ion-induced structural changes in the C-terminal domain are comparable to those of human centrins. We used isothermal titration calorimetry to quantify the binding of SdCen, N-SdCen, and C-SdCen to three types of natural target peptides, derived from the human XPC protein (P17-XPC), the human Sfi1 protein (R17-hSfi1), and the yeast Kar1 protein (P19-Kar1). The three peptides possess the complete (P17-XPC and R17-hSfi1) or partial (P19-Kar1) centrin binding motif (W(1)L(4)L(8)). The integral SdCen exhibits two binding sites for each target peptide, with distinct affinities for each site and each peptide. The high-affinity peptide binding site corresponds to the C-terminal domain of SdCen and displays binding constants and the poor Ca(2+) sensitivities similar to those observed for human centrins. The low-affinity site constituted by the N-terminal domain is active only in the presence of Ca(2+). The thermodynamic binding parameters suggest that the C-terminal domain of SdCen may be constitutively bound to a target, while the N-terminal domain could bind a target only after a Ca(2+) signal. SdCen is also able to interact with calmodulin binding peptides (W(1)F(5)V(8)F(14) motif) with a 1:1 stoichiometry, whereas the isolated N- and C-terminal domains have a much lower affinity. These data suggest particular molecular mechanisms used by SdCen (and probably by other algal centrins) to respond to cellular Ca(2+) signals.


Assuntos
Cálcio/farmacologia , Clorófitas/metabolismo , Combinação Trimetoprima e Sulfametoxazol/química , Combinação Trimetoprima e Sulfametoxazol/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/efeitos dos fármacos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Magnésio/farmacologia , Meliteno/farmacologia , Modelos Biológicos , Dados de Sequência Molecular , Ligação Proteica/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Homologia de Sequência de Aminoácidos , Transdução de Sinais/efeitos dos fármacos , Especificidade por Substrato , Termodinâmica
8.
Nucleic Acids Res ; 35(17): 5898-912, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17726056

RESUMO

DNA damage checkpoints are signal transduction pathways that are activated after genotoxic insults to protect genomic integrity. At the site of DNA damage, 'mediator' proteins are in charge of recruiting 'signal transducers' to molecules 'sensing' the damage. Budding yeast Rad9, fission yeast Crb2 and metazoan 53BP1 are presented as mediators involved in the activation of checkpoint kinases. Here we show that, despite low sequence conservation, Rad9 exhibits a tandem tudor domain structurally close to those found in human/mouse 53BP1 and fission yeast Crb2. Moreover, this region is important for the resistance of Saccharomyces cerevisiae to different genotoxic stresses. It does not mediate direct binding to a histone H3 peptide dimethylated on K79, nor to a histone H4 peptide dimethylated on lysine 20, as was demonstrated for 53BP1. However, the tandem tudor region of Rad9 directly interacts with single-stranded DNA and double-stranded DNAs of various lengths and sequences through a positively charged region absent from 53BP1 and Crb2 but present in several yeast Rad9 homologs. Our results argue that the tandem tudor domains of Rad9, Crb2 and 53BP1 mediate chromatin binding next to double-strand breaks. However, their modes of chromatin recognition are different, suggesting that the corresponding interactions are differently regulated.


Assuntos
Proteínas de Ciclo Celular/química , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/química , Proteínas de Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2 , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fase G1 , Histonas/química , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Camundongos , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos da radiação , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Alinhamento de Sequência , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
9.
Biophys J ; 95(11): 5247-56, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18223007

RESUMO

Apo-calmodulin, a small, mainly alpha, soluble protein is a calcium-dependent protein activator. This article presents a study of internal dynamics of native and thermal unfolded apo-calmodulin, using quasi-elastic neutron scattering. This technique can probe protein internal dynamics in the picosecond timescale and in the nanometer length-scale. It appears that a dynamical transition is associated with thermal denaturation of apo-calmodulin. This dynamical transition goes together with a decrease of the confinement of hydrogen atoms, a decrease of immobile protons proportion and an increase of dynamical heterogeneity. The comparison of native and unfolded states dynamics suggests that the dynamics of protein atoms is more influenced by their distance to the backbone than by their solvent exposure.


Assuntos
Calmodulina/metabolismo , Temperatura de Transição , Calmodulina/química , Elasticidade , Humanos , Movimento , Difração de Nêutrons , Desnaturação Proteica , Dobramento de Proteína
10.
J Mol Biol ; 373(4): 1032-46, 2007 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-17897675

RESUMO

Human centrin 2 (HsCen2), an EF-hand calcium binding protein, plays a regulatory role in the DNA damage recognition during the first steps of the nucleotide excision repair. This biological action is mediated by the binding to a short fragment (N847-R863) from the C-terminal region of xeroderma pigmentosum group C (XPC) protein. This work presents a detailed structural and energetic characterization of the HsCen2/XPC interaction. Using a truncated form of HsCen2 we obtained a high resolution (1.8 A) X-ray structure of the complex with the peptide N847-R863 from XPC. Structural and thermodynamic analysis of the interface revealed the existence of both electrostatic and apolar inter-molecular interactions, but the binding energy is mainly determined by the burial of apolar bulky side-chains into the hydrophobic pocket of the HsCen2 C-terminal domain. Binding studies with various peptide variants showed that XPC residues W848 and L851 constitute the critical anchoring side-chains. This enabled us to define a minimal centrin binding peptide variant of five residues, which accounts for about 75% of the total free energy of interaction between the two proteins. Immunofluorescence imaging in HeLa cells demonstrated that HsCen2 binding to the integral XPC protein may be observed in living cells, and is determined by the same interface residues identified in the X-ray structure of the complex. Overexpression of XPC perturbs the cellular distribution of HsCen2, by inducing a translocation of centrin molecules from the cytoplasm to the nucleus. The present data confirm that the in vitro structural features of the centrin/XPC peptide complex are highly relevant to the cellular context.


Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Ciclo Celular/química , Proteínas de Ligação a DNA/química , Termodinâmica , Sítios de Ligação , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Xeroderma Pigmentoso/metabolismo
11.
Biomacromolecules ; 9(3): 812-7, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18266320

RESUMO

Binding human serum albumin (HSA) of three polyoxometalates (POMs) with the Wells-Dawson structure, alpha(2)-[P2W17O61]10- (abbreviated as alpha(2)-P2W17) and two of its metal-substituted derivatives, alpha(2)-[NiP2W17O61]8- and alpha(2)-[CuP2W17O61]8- (alpha(2)-P2W17Ni and alpha(2)-P2W17Cu, respectively) was studied in an aqueous medium at pH 7.5. Fluorescence quenching, circular dichroism (CD), thermal denaturation, and isothermal titration calorimetry (ITC) were used for this purpose. The results were compared with those obtained previously with the Keggin structure POM, [H2W12O40]6- (H2W12), and the wheel-shaped structure, [NaP5W30O110]14- (P5W30). All these POMs bind HSA mainly by electrostatic interactions. Comparison of the physical characteristics and HSA interaction parameters for the POMs of the present work and those studied previously showed that the overall charge of the clusters is not the single parameter governing the binding process and its consequences. In contrast, besides the influences of the structure, the dimension and/or weight of the POMs, the results have permitted highlighting of the importance of each POM atomic composition for its binding behavior.


Assuntos
Cobre/química , Níquel/química , Compostos de Fósforo/química , Albumina Sérica/química , Compostos de Tungstênio/química , Calorimetria , Dicroísmo Circular , Fluorescência , Temperatura Alta , Humanos , Estrutura Molecular
12.
J Phys Chem B ; 111(7): 1809-14, 2007 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-17256886

RESUMO

As a step toward the elucidation of the mechanistic pathways governing the known bioactivity of polyoxometalates (POMs), two representative molecules of this class of chemicals, the wheel-shaped [NaP(5)W(30)O(110)]14- (P(5)W(30)) and the Keggin-type anion [H(2)W(12)O(40)]6- (H(2)W(12)), are shown, by two independent techniques, to interact with the fatty-acid-free human serum albumin (HSA). The excited-state lifetime of the single tryptophan molecule of this protein is dramatically decreased by the binding. The quenching mechanism is found to constitute the first example of energy transfer between HSA and POMs. Such molecular recognition is believed to be a key step for subsequent evolution of the systems. Circular dichroism (CD) was used to assess the structural effects of POM binding on HSA and to confirm the interaction revealed by fluorescence studies. CD experiments showed that the two POMs have different effects on the secondary structure of the protein. Binding P(5)W(30) partially unfolds the protein whereas H(2)W(12) has no remarkable effect on the structure of the protein.


Assuntos
Transferência de Energia , Albumina Sérica/química , Compostos de Tungstênio/química , Dicroísmo Circular , Humanos , Ligação Proteica , Estrutura Secundária de Proteína , Albumina Sérica/metabolismo , Espectrometria de Fluorescência , Termodinâmica , Compostos de Tungstênio/metabolismo
13.
J Phys Chem B ; 111(38): 11253-9, 2007 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-17784743

RESUMO

The molecular recognition of polyoxometalates by human serum albumin is studied using two different polyoxometalates (POMs) at pH 7.5. The results are compared with those obtained at pH 3.5 and 9.0. At pH 7.5, both POMs strongly interact with the protein with different binding behaviors. The Keggin shaped POM, [H(2)W(12)O(40)](6-) (H2W12), specifically binds the protein, forming a complex with a 1:1 stoichiometry with Ka = 2.9 x 10(6) M(-1). The binding constant decreased dramatically with the increase of the ionic strength, thus indicating a mostly electrostatic binding process. Isothermal titration calorimetry (ITC) experiments show that the binding is an enthalpically driven exothermic process. For the wheel shaped POM [NaP(5)W(30)O(110)](14-) (P5W30), there are up to five binding sites on the protein. Increasing the ionic strength changes the binding behavior significantly, leading to a simple exothermic process, with several binding sites. Competitive binding experiments indicate that the two POMs share one common binding site. In addition, they show the existence of another important binding site for P5W30. The two POMs exhibit different binding dependences on the pH. The combination of the experimental results with the knowledge of the surface map of the protein in its N-B conformation transition domain leads to the proposal for the probable binding site of POMs. The present work reveals a protein conformation change upon P5W30 binding, a new feature not explicitly documented in previous studies.


Assuntos
Albumina Sérica/química , Albumina Sérica/metabolismo , Compostos de Tungstênio/química , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Concentração Osmolar , Ligação Proteica , Espectrofotometria , Termodinâmica , Titulometria
14.
FEBS J ; 273(19): 4504-15, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16956364

RESUMO

hSfi1, a human centrosomal protein with homologs in other eukaryotic organisms, includes 23 repeats, each of 23 amino acids, separated by 10 residue linkers. The main molecular partner in the centrosome is a small, calcium-binding EF-hand protein, the human centrin 2. Using isothermal titration calorimetry experiments, we characterized the centrin-binding capacity of three isolated hSfi1 repeats, two exhibiting the general consensus motif and the third being the unique Pro-containing human repeat. The two standard peptides bind human centrin 2 and its isolated C-terminal domain with high affinity (approximately 10(7) M(-1)) by an enthalpy-driven mechanism, with a moderate Ca2+ dependence. The Pro-containing repeat shows a binding affinity that is two orders of magnitude lower. The target binding site is localized within the C-terminal domain of human centrin 2. Fluorescence titration and NMR spectroscopy show that the well-conserved Trp residue situated in the C-terminus of each repeat is deeply embedded in a protein hydrophobic cavity, indicating that the peptide direction is reversed relative to previously studied centrin targets. The present results suggest that almost all of the repeats of the Sfi1 protein may independently bind centrin molecules. On the basis of this hypothesis and previous studies on centrin self-assembly, we propose a working model for the role of centrin-Sfi1 interactions in the dynamic structure of centrosome-associated contractile fibers.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrossomo/química , Sequências Repetitivas de Aminoácidos , Sequência de Aminoácidos , Cálcio/farmacologia , Proteínas de Ligação ao Cálcio/química , Proteínas de Ciclo Celular/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Dados de Sequência Molecular , Conformação Proteica , Termodinâmica
15.
Biochimie ; 88(9): 1199-207, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16697101

RESUMO

The effect of increasing concentrations of 2,2,2-trifluoroethanol (TFE) on the conformational stability of the Shiga toxin B-subunit (STxB), a bacterial homopentameric protein involved in cell-surface binding and intracellular transport, has been studied by far-, near-UV circular dichroism (CD), intrinsic fluorescence, analytical ultracentrifugation, and differential scanning calorimetry (DSC) under equilibrium conditions. Our data show that the native structure of STxB is highly perturbed by the presence of TFE. In fact, at concentrations of TFE above 20% (v/v), the native pentameric conformation of the protein is cooperatively transformed into a helix-rich monomeric and partially folded conformational state with no significant tertiary structure. Additionally, no cooperative transition was detected upon a further increase in the TFE concentration (above 40% (v/v)). The thermal stability of STxB was investigated at several different TFE concentrations using DSC and CD spectroscopy. Thermal transitions at TFE concentrations of up to 20% (v/v) were successfully fitted to the two-state folding/unfolding coupled to oligomerization model consistent with the transition between a pentameric folded conformation to a monomeric state of the protein, which the presence of TFE stabilizes as a partially folded conformation.


Assuntos
Subunidades Proteicas/química , Toxina Shiga II/química , Trifluoretanol/química , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Conformação Proteica/efeitos dos fármacos , Desnaturação Proteica , Dobramento de Proteína , Subunidades Proteicas/efeitos dos fármacos , Temperatura , Termodinâmica , Trifluoretanol/farmacologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-16820684

RESUMO

Centrins are highly conserved calcium-binding proteins involved in the nucleotide-excision repair pathway as a subunit of the heterotrimer including the XPC and hHR23B proteins. A complex formed by a Ca2+-bound human centrin 2 construct (the wild type lacking the first 25 amino acids) with a 17-mer peptide derived from the XPC sequence (residues Asn847-Arg863) was crystallized. Data were collected to 1.65 angstroms resolution from crystals grown in 30% monomethyl polyethylene glycol (MPEG) 500, 100 mM NaCl and 100 mM Bicine pH 9.0. Crystals are monoclinic and belong to space group C2, with two molecules in the asymmetric unit. The unit-cell parameters are a = 60.28, b = 59.42, c = 105.14 angstroms, alpha = gamma = 90, beta = 94.67 degrees. A heavy-atom derivative was obtained by co-crystallization with Sr2+. The substitution was rationalized by calorimetry experiments, which indicate a binding constant for Sr2+ of 4.0 x 10(4) M(-1).


Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Calorimetria , Cristalização , Humanos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Transglutaminases/química , Transglutaminases/metabolismo , Difração de Raios X
17.
FEBS J ; 272(8): 2022-36, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15819893

RESUMO

The solution structure of Nereis diversicolor sarcoplasmic calcium-binding protein (NSCP) in the calcium-bound form was determined by NMR spectroscopy, distance geometry and simulated annealing. Based on 1859 NOE restraints and 262 angular restraints, 17 structures were generated with a rmsd of 0.87 A from the mean structure. The solution structure, which is highly similar to the structure obtained by X-ray crystallography, includes two open EF-hand domains, which are in close contact through their hydrophobic surfaces. The internal dynamics of the protein backbone were determined by studying amide hydrogen/deuterium exchange rates and 15N nuclear relaxation. The two methods revealed a highly compact and rigid structure, with greatly restricted mobility at the two termini. For most of the amide protons, the free energy of exchange-compatible structural opening is similar to the free energy of structural stability, suggesting that isotope exchange of these protons takes place through global unfolding of the protein. Enhanced conformational flexibility was noted in the unoccupied Ca2+-binding site II, as well as the neighbouring helices. Analysis of the experimental nuclear relaxation and the molecular dynamics simulations give very similar profiles for the backbone generalized order parameter (S2), a parameter related to the amplitude of fast (picosecond to nanosecond) movements of N(H)-H vectors. We also noted a significant correlation between this parameter, the exchange rate, and the crystallographic B factor along the sequence.


Assuntos
Proteínas de Ligação ao Cálcio/química , Ressonância Magnética Nuclear Biomolecular , Poliquetos/química , Amidas/metabolismo , Animais , Sítios de Ligação , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cristalografia por Raios X , Medição da Troca de Deutério , Motivos EF Hand , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Maleabilidade , Conformação Proteica , Termodinâmica
18.
Protein Sci ; 13(5): 1295-303, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15075407

RESUMO

We identified in Salmonella enterica serovar Typhi a cluster of four genes encoding a deoxyribokinase (DeoK), a putative permease (DeoP), a repressor (DeoQ), and an open reading frame encoding a 337 amino acid residues protein of unknown function. We show that the latter protein, called DeoM, is a hexamer whose synthesis is increased by a factor over 5 after induction with deoxyribose. The CD spectrum of the purified recombinant protein indicated a dominant contribution of betatype secondary structure and a small content of alpha-helix. Temperature and guanidinium hydrochloride induced denaturation of DeoM indicated that the hexamer dissociation and monomer unfolding are coupled processes. DeoM exhibits 12.5% and 15% sequence identity with galactose mutarotase from Lactococcus lactis and respectively Escherichia coli, which suggested that these three proteins share similar functions. Polarimetric experiments demonstrated that DeoM is a mutarotase with high specificity for deoxyribose. Site-directed mutagenesis of His183 in DeoM, corresponding to a catalytically active residue in GalM, yielded an almost inactive deoxyribose mutarotase. DeoM was crystallized and diffraction data collected for two crystal systems, confirmed its hexameric state. The possible role of the protein and of the entire gene cluster is discussed in connection with the energy metabolism of S. enterica under particular growth conditions.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Carboidratos Epimerases/química , Carboidratos Epimerases/genética , Desoxirribose/metabolismo , Salmonella enterica/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/isolamento & purificação , Carboidratos Epimerases/isolamento & purificação , Dicroísmo Circular , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Desoxirribose/química , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fases de Leitura Aberta/genética , Salmonella enterica/genética , Alinhamento de Sequência , Especificidade por Substrato
19.
Protein Sci ; 11(11): 2551-60, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12381839

RESUMO

Structural genomics is a new approach in functional assignment of proteins identified via whole-genome sequencing programs. Its rationale is that nonhomologous proteins performing similar or related biological functions might have similar tertiary structure. We used dye pseudoaffinity chromatography, two-dimensional gel electrophoresis, and mass spectrometry to identify two novel Escherichia coli nucleotide-binding proteins, YnaF and YajQ. YnaF exhibited significant sequence identity with MJ0577, an ATP-binding protein from a hyperthermophile (Methanococcus jannaschii), and with UspA, a protein from Haemophilus influenzae that belongs to the Universal Stress Protein family. YnaF conserves the ATP-binding site and the dimeric structure observed in the crystal of MJ0577. The protein YajQ, present in many bacterial genomes, is missing in eukaryotes. In the absence of significant similarities of YajQ to any solved structure, we determined its structural and ligand-binding properties by NMR and isothermal titration calorimetry. We demonstrate that YajQ is composed of two domains, each centered on a beta-sheet, that are connected by two helical segments. NMR studies, corroborated with local sequence conservation among YajQ homologs in various bacteria, indicate that one of the beta-sheets is mostly involved in biological activity.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Calorimetria , Dicroísmo Circular , Dimerização , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Nucleotídeos/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteoma , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
20.
FEBS J ; 279(12): 2108-19, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22487307

RESUMO

Yeast Dre2 is an essential Fe-S cluster-containing protein that has been implicated in cytosolic Fe-S protein biogenesis and in cell death regulation in response to oxidative stress. Its absence in yeast can be complemented by the human homologous antiapoptotic protein cytokine-induced apoptosis inhibitor 1 (also known as anamorsin), suggesting at least one common function. Using complementary techniques, we have investigated the biochemical and biophysical properties of Dre2. We show that it contains an N-terminal domain whose structure in solution consists of a stable well-structured monomer with an overall typical S-adenosylmethionine methyltransferase fold lacking two α-helices and a ß-strand. The highly conserved C-terminus of Dre2, containing two Fe-S clusters, influences the flexibility of the N-terminal domain. We discuss the hypotheses that the activity of the N-terminal domain could be modulated by the redox activity of Fe-S clusters containing the C-terminus domain in vivo.


Assuntos
Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Proteínas Ferro-Enxofre/genética , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA