Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
FASEB J ; 34(6): 8510-8525, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32367531

RESUMO

Alpha intercalated cells (αICs) in the kidney collecting duct (CD) belong to a family of mitochondria rich cells (MRCs) and have a crucial role in acidifying the urine via apical V-ATPase pumps. The nature of metabolism in αICs and its relationship to transport was not well-understood. Here, using multiphoton live cell imaging in mouse kidney tissue, FIB-SEM, and other complementary techniques, we provide new insights into mitochondrial structure and function in αICs. We show that αIC mitochondria have a rounded structure and are not located in close proximity to V-ATPase containing vesicles. They display a bright NAD(P)H fluorescence signal and low uptake of voltage-dependent dyes, but are energized by a pH gradient. However, expression of complex V (ATP synthase) is relatively low in αICs, even when stimulated by metabolic acidosis. In contrast, anaerobic glycolytic capacity is surprisingly high, and sufficient to maintain intracellular calcium homeostasis in the presence of complete aerobic inhibition. Moreover, glycolysis is essential for V-ATPase-mediated proton pumping. Key findings were replicated in narrow/clear cells in the epididymis, also part of the MRC family. In summary, using a range of cutting-edge techniques to investigate αIC metabolism in situ, we have discovered that these mitochondria dense cells have a high glycolytic capacity.


Assuntos
Glicólise/fisiologia , Túbulos Renais Coletores/metabolismo , Mitocôndrias/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Cálcio/metabolismo , Epididimo/metabolismo , Células Epiteliais/metabolismo , Homeostase/fisiologia , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Bombas de Próton/metabolismo , ATPases Translocadoras de Prótons/metabolismo
2.
Pflugers Arch ; 468(5): 849-58, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26898302

RESUMO

Aldosterone binds to the mineralocorticoid receptor (MR) and increases renal Na(+) reabsorption via up-regulation of the epithelial Na(+) channel (ENaC) and the Na(+)-K(+)-ATPase in the collecting system (CS) and possibly also via the NaCl cotransporter (NCC) in the distal convoluted tubule (DCT). However, whether aldosterone directly regulates NCC via MR or indirectly through systemic alterations remains controversial. We used mice with deletion of MR in ∼20 % of renal tubule cells (MR/X mice), in which MR-positive (MR(wt)) and -negative (MR(ko)) cells can be studied side-by-side in the same physiological context. Adult MR/X mice showed similar mRNA and protein levels of renal ion transport proteins to control mice. In MR/X mice, no differences in NCC abundance and phosphorylation was seen between MR(wt) and MR(ko) cells and dietary Na(+) restriction up-regulated NCC to similar extent in both groups of cells. In contrast, MR(ko) cells in the CS did not show any detectable alpha-ENaC abundance or apical targeting of ENaC neither on control diet nor in response to dietary Na(+) restriction. Furthermore, Na(+)-K(+)-ATPase expression was unaffected in MR(ko) cells of the DCT, while it was lost in MR(ko) cells of the CS. In conclusion, MR is crucial for ENaC and Na(+)-K(+)-ATPase regulation in the CS, but is dispensable for NCC and Na(+)-K(+)-ATPase regulation in the DCT.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Deleção de Genes , Receptores de Mineralocorticoides/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Aldosterona/metabolismo , Animais , Feminino , Túbulos Renais Distais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Mineralocorticoides/genética , Sódio/metabolismo , Cloreto de Sódio na Dieta/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
3.
J Am Soc Nephrol ; 26(7): 1537-48, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25349206

RESUMO

Na(+) transport in the renal distal convoluted tubule (DCT) by the thiazide-sensitive NaCl cotransporter (NCC) is a major determinant of total body Na(+) and BP. NCC-mediated transport is stimulated by aldosterone, the dominant regulator of chronic Na(+) homeostasis, but the mechanism is controversial. Transport may also be affected by epithelial remodeling, which occurs in the DCT in response to chronic perturbations in electrolyte homeostasis. Hsd11b2(-/-) mice, which lack the enzyme 11ß-hydroxysteroid dehydrogenase type 2 (11ßHSD2) and thus exhibit the syndrome of apparent mineralocorticoid excess, provided an ideal model in which to investigate the potential for DCT hypertrophy to contribute to Na(+) retention in a hypertensive condition. The DCTs of Hsd11b2(-/-) mice exhibited hypertrophy and hyperplasia and the kidneys expressed higher levels of total and phosphorylated NCC compared with those of wild-type mice. However, the striking structural and molecular phenotypes were not associated with an increase in the natriuretic effect of thiazide. In wild-type mice, Hsd11b2 mRNA was detected in some tubule segments expressing Slc12a3, but 11ßHSD2 and NCC did not colocalize at the protein level. Thus, the phosphorylation status of NCC may not necessarily equate to its activity in vivo, and the structural remodeling of the DCT in the knockout mouse may not be a direct consequence of aberrant corticosteroid signaling in DCT cells. These observations suggest that the conventional concept of mineralocorticoid signaling in the DCT should be revised to recognize the complexity of NCC regulation by corticosteroids.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2/farmacologia , Túbulos Renais Distais/patologia , Fosforilação/efeitos dos fármacos , Simportadores de Cloreto de Sódio/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Análise de Variância , Animais , Células Cultivadas , DNA Complementar/análise , Modelos Animais de Doenças , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Feminino , Hipertrofia/patologia , Túbulos Renais Distais/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase/métodos , RNA/análise , Distribuição Aleatória , Transcitose/fisiologia
4.
Am J Physiol Renal Physiol ; 306(4): F457-67, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24402096

RESUMO

Na(+) reabsorption from the distal renal tubule involves electroneutral and electrogenic pathways, with the latter promoting K(+) excretion. The relative activities of these two pathways are tightly controlled, participating in the minute-to-minute regulation of systemic K(+) balance. The pathways are interdependent: the activity of the NaCl cotransporter (NCC) in the distal convoluted tubule influences the activity of the epithelial Na(+) channel (ENaC) downstream. This effect might be mediated by changes in distal Na(+) delivery per se or by molecular and structural adaptations in the connecting tubule and collecting ducts. We hypothesized that acute inhibition of NCC activity would cause an immediate increase in Na(+) flux through ENaC, with a concomitant increase in renal K(+) excretion. We tested this using renal clearance methodology in anesthetized mice, by the administration of hydrochlorothiazide (HCTZ) and/or benzamil (BZM) to exert specific blockade of NCC and ENaC, respectively. Bolus HCTZ elicited a natriuresis that was sustained for up to 110 min; urinary K(+) excretion was not affected. Furthermore, the magnitude of the natriuresis was no greater during concomitant BZM administration. This suggests that ENaC-mediated Na(+) reabsorption was not normally limited by Na(+) delivery, accounting for the absence of thiazide-induced kaliuresis. After dietary Na(+) restriction, HCTZ elicited a kaliuresis, but the natiuretic effect of HCTZ was not enhanced by BZM. Our findings support a model in which inhibition of NCC activity does not increase Na(+) reabsorption through ENaC solely by increasing distal Na(+) delivery but rather by inducing a molecular and structural adaptation in downstream nephron segments.


Assuntos
Transporte de Íons/efeitos dos fármacos , Túbulos Renais Distais/efeitos dos fármacos , Inibidores de Simportadores de Cloreto de Sódio/farmacologia , Simportadores de Cloreto de Sódio/metabolismo , Sódio/metabolismo , Amilorida/análogos & derivados , Amilorida/farmacologia , Animais , Diuréticos/farmacologia , Hidroclorotiazida/farmacologia , Túbulos Renais Distais/metabolismo , Camundongos , Natriurese/efeitos dos fármacos
5.
Hum Mol Genet ; 19(6): 1119-28, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20056676

RESUMO

Collagen type IV is the major structural component of the basement membrane and COL4A1 mutations cause adult small vessel disease, familial porencephaly and hereditary angiopathy with nephropathy aneurysm and cramps (HANAC) syndrome. Here, we show that animals with a Col4a1 missense mutation (Col4a1(+/Raw)) display focal detachment of the endothelium from the media and age-dependent defects in vascular function including a reduced response to nor-epinephrine. Age-dependent hypersensitivity to acetylcholine is abolished by inhibition of nitric oxide synthase (NOS) activity, indicating that Col4a1 mutations affect vasorelaxation mediated by endothelium-derived nitric oxide (NO). These defects are associated with a reduction in basal NOS activity and the development of heightened NO sensitivity of the smooth muscle. The vascular function defects are physiologically relevant as they maintain in part the hypotension in mutant animals, which is primarily associated with a reduced red blood cell volume due to a reduction in red blood cell number, rather than defects in kidney function. To understand the molecular mechanism underlying these vascular defects, we examined the deposition of collagen type IV in the basement membrane, and found it to be defective. Interestingly, this mutation also leads to activation of the unfolded protein response. In summary, our results indicate that mutations in COL4A1 result in a complex vascular phenotype encompassing defects in maintenance of vascular tone, endothelial cell function and blood pressure regulation.


Assuntos
Vasos Sanguíneos/fisiopatologia , Colágeno Tipo IV/genética , Volume de Eritrócitos/fisiologia , Hipotensão/sangue , Hipotensão/fisiopatologia , Mutação/genética , Animais , Animais Recém-Nascidos , Vasos Sanguíneos/enzimologia , Vasos Sanguíneos/patologia , Vasos Sanguíneos/ultraestrutura , Hemorragia Cerebral/sangue , Hemorragia Cerebral/complicações , Hemorragia Cerebral/patologia , Hemorragia Cerebral/fisiopatologia , GMP Cíclico/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Homeostase/efeitos dos fármacos , Hipotensão/complicações , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Músculo Liso Vascular/ultraestrutura , Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
6.
Physiol Rep ; 6(20): e13899, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30350402

RESUMO

In the kidney, purinergic (P2) receptor-mediated ATP signaling has been shown to be an important local regulator of epithelial sodium transport. Appropriate sodium regulation is crucial for blood pressure (BP) control and disturbances in sodium balance can lead to hypo- or hypertension. Links have already been established between P2 receptor signaling and the development of hypertension, attributed mainly to vascular and/or inflammatory effects. A transgenic mouse model with deletion of the P2X4 receptor (P2X4-/- ) is known to have hypertension, which is thought to reflect endothelial dysfunction and impaired nitric oxide (NO) release. However, renal function in this model has not been characterized; moreover, studies in vitro have shown that the P2X4 receptor can regulate renal epithelial Na+ channel (ENaC) activity. Therefore, in the present study we investigated renal function and sodium handling in P2X4-/- mice, focusing on ENaC-mediated Na+ reabsorption. We confirmed an elevated BP in P2X4-/- mice compared with wild-type mice, but found that ENaC-mediated Na+ reabsorption is no different from wild-type and does not contribute to the raised BP observed in the knockout. However, when P2X4-/- mice were placed on a low sodium diet, BP normalized. Plasma aldosterone concentration tended to increase according to sodium restriction status in both genotypes; in contrast to wild-types, P2X4-/- mice did not show an increase in functional ENaC activity. Thus, although the increased BP in P2X4-/- mice has been attributed to endothelial dysfunction and impaired NO release, there is also a sodium-sensitive component.


Assuntos
Pressão Sanguínea , Dieta Hipossódica , Hipertensão Renal/metabolismo , Receptores Purinérgicos P2X4/genética , Reabsorção Renal , Animais , Canais Epiteliais de Sódio/metabolismo , Hipertensão Renal/dietoterapia , Hipertensão Renal/genética , Rim/metabolismo , Rim/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores Purinérgicos P2X4/metabolismo , Sódio/metabolismo
7.
Front Physiol ; 4: 216, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23966951

RESUMO

Purinergic signaling within the kidney is becoming an important focus in the study of renal health and disease. The effectors of ATP signaling, the P2Y and P2X receptors, are expressed to varying extents in and along the nephron. There are many studies demonstrating the importance of the P2Y2 receptor on kidney function, and other P2 receptors are now emerging as participants in renal regulation. The P2X4 receptor has been linked to epithelial sodium transport in the nephron and expression levels of the P2X7 receptor are up-regulated in certain pathophysiological states. P2X7 antagonism has been shown to ameliorate rodent models of DOCA salt-induced hypertension and P2X4 null mice are hypertensive. Interestingly, polymorphisms in the genetic loci of P2X4 and P2X7 have been linked to blood pressure variation in human studies. In addition to the increasing evidence linking these two P2X receptors to renal function and health, a number of studies link the two receptors in terms of physical associations between their subunits, demonstrated both in vitro and in vivo. This review will analyze the current literature regarding interactions between P2X4 and P2X7 and assess the potential impact of these with respect to renal function.

8.
Hypertension ; 60(3): 684-90, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22777941

RESUMO

In vivo, the enzyme 11ß-hydroxysteroid dehydrogenase type 2 influences ligand access to the mineralocorticoid receptor. Ablation of the encoding gene, HSD11B2, causes the hypertensive syndrome of apparent mineralocorticoid excess. Studies in humans and experimental animals have linked reduced 11ß-hydroxysteroid dehydrogenase type 2 activity and salt sensitivity of blood pressure. In the present study, renal mechanisms underpinning salt sensitivity were investigated in Hsd11b2(+/-) mice fed low-, standard-, and high-sodium diets. In wild-type mice, there was a strong correlation between dietary sodium content and fractional sodium excretion but not blood pressure. High sodium feeding abolished amiloride-sensitive sodium reabsorption, consistent with downregulation of the epithelial sodium channel. In Hsd11b2(+/-) mice, the natriuretic response to increased dietary sodium content was blunted, and epithelial sodium channel activity persisted. High-sodium diet also reduced renal blood flow and increased blood pressure in Hsd11b2(+/-) mice. Aldosterone was modulated by dietary sodium in both genotypes, and salt sensitivity in Hsd11b2(+/-) mice was associated with increased plasma corticosterone levels. Chronic administration of an epithelial sodium channel blocker or a glucocorticoid receptor antagonist prevented salt sensitivity in Hsd11b2(+/-) mice, whereas mineralocorticoid receptor blockade with spironolactone did not. This study shows that reduced 11ß-hydroxysteroid dehydrogenase type 2 causes salt sensitivity of blood pressure because of impaired renal natriuretic capacity. This reflects deregulation of epithelial sodium channels and increased renal vascular resistance. The phenotype is not caused by illicit activation of mineralocorticoid receptors by glucocorticoids but by direct activation of glucocorticoid receptors.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Regulação para Baixo/fisiologia , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/fisiologia , Heterozigoto , Tolerância ao Sal/genética , Tolerância ao Sal/fisiologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Corticosterona/sangue , Genótipo , Rim/irrigação sanguínea , Camundongos , Camundongos Endogâmicos , Modelos Animais , Fenótipo , Receptores de Glucocorticoides/fisiologia , Fluxo Sanguíneo Regional/efeitos dos fármacos , Sódio na Dieta/farmacologia , Resistência Vascular/fisiologia
9.
Hypertension ; 57(3): 515-520, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21282561

RESUMO

Salt sensitivity of blood pressure is an independent risk factor for cardiovascular morbidity. Mechanistically, abnormal mineralocorticoid action and subclinical renal impairment may blunt the natriuretic response to high sodium intake, causing blood pressure to rise. 11ß-Hydroxysteroid dehydrogenase type 2 (11ßHSD2) controls ligand access to the mineralocorticoid receptor, and ablation of the enzyme causes severe hypertension. Polymorphisms in HSD11B2 are associated with salt sensitivity of blood pressure in normotensives. In this study, we used mice heterozygote for a null mutation in Hsd11b2 (Hsd11b2(+/-)) to define the mechanisms linking reduced enzyme activity to salt sensitivity of blood pressure. A high-sodium diet caused a rapid and sustained increase in blood pressure in Hsd11b2(+/-) mice but not in wild-type littermates. During the adaptation to high-sodium diet, heterozygotes displayed impaired sodium excretion, a transient positive sodium balance, and hypokalemia. After 21 days of high-sodium feeding, Hsd11b2(+/-) mice had an increased heart weight. Mineralocorticoid receptor antagonism partially prevented the increase in heart weight but not the increase in blood pressure. Glucocorticoid receptor antagonism prevented the rise in blood pressure. In Hsd11b2(+/-) mice, high-sodium feeding caused suppression of aldosterone and a moderate but sustained increase in corticosterone. This study demonstrates an inverse relationship among 11ßHSD2 activity, heart weight, and blood pressure in a clinically important context. Reduced activity causes salt sensitivity of blood pressure, but this does not reflect illicit activation of mineralocorticoid receptors by glucocorticoids. Instead, we have identified a novel interaction among 11ßHSD2, dietary salt, and circulating glucocorticoids.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Pressão Sanguínea/genética , Haploinsuficiência/genética , Hipertensão/induzido quimicamente , Hipertensão/genética , Cloreto de Sódio na Dieta/efeitos adversos , Análise de Variância , Animais , Pressão Sanguínea/efeitos dos fármacos , Antagonistas de Hormônios/farmacologia , Camundongos , Mifepristona/farmacologia , Mutação , Polimorfismo Genético , Receptores de Glucocorticoides/genética , Receptores de Mineralocorticoides/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Bioorg Med Chem Lett ; 17(10): 2838-43, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17350260

RESUMO

A series of adamantyl amide 11beta-HSD1 inhibitors has been discovered and chemically modified. Selected compounds are selective for 11beta-HSD1 over 11beta-HSD2 and possess excellent cellular potency in human and murine 11beta-HSD1 assays. Good pharmacodynamic characteristics are observed in ex vivo assays.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Adamantano/análogos & derivados , Adamantano/farmacologia , Amidas/farmacologia , Inibidores Enzimáticos/farmacologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/antagonistas & inibidores , Adamantano/química , Amidas/química , Animais , Inibidores Enzimáticos/química , Humanos , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA