Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 290(2003): 20230555, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37464757

RESUMO

Social bees are critical for supporting biodiversity, ecosystem function and crop yields globally. Colony size is a key ecological trait predicted to drive sensitivity to environmental stressors and may be especially important for species with annual cycles of sociality, such as bumblebees. However, there is limited empirical evidence assessing the effect of colony size on sensitivity to environmental stressors or the mechanisms underlying these effects. Here, we examine the relationship between colony size and sensitivity to environmental stressors in bumblebees. We exposed colonies at different developmental stages briefly (2 days) to a common neonicotinoid (imidacloprid) and cold stress, while quantifying behaviour of individuals. Combined imidacloprid and cold exposure had stronger effects on both thermoregulatory behaviour and long-term colony growth in small colonies. We find that imidacloprid's effects on behaviour are mediated by body temperature and spatial location within the nest, suggesting that social thermoregulation provides a buffering effect in large colonies. Finally, we demonstrate qualitatively similar effects in size-manipulated microcolonies, suggesting that group size per se, rather than colony age, drives these patterns. Our results provide evidence that colony size is critical in driving sensitivity to stressors and may help elucidate mechanisms underlying the complex and context-specific impacts of pesticide exposure.


Assuntos
Ecossistema , Inseticidas , Abelhas , Animais , Resposta ao Choque Frio , Neonicotinoides , Nitrocompostos/toxicidade , Inseticidas/toxicidade
2.
Proc Biol Sci ; 288(1950): 20202512, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33975481

RESUMO

Male butterflies in the hyperdiverse tribe Eumaeini possess an unusually complex and diverse repertoire of secondary sexual characteristics involved in pheromone production and dissemination. Maintaining multiple sexually selected traits is likely to be metabolically costly, potentially resulting in trade-offs in the evolution of male signals. However, a phylogenetic framework to test hypotheses regarding the evolution and maintenance of male sexual traits in Eumaeini has been lacking. Here, we infer a comprehensive, time-calibrated phylogeny from 379 loci for 187 species representing 91% of the 87 described genera. Eumaeini is a monophyletic group that originated in the late Oligocene and underwent rapid radiation in the Neotropics. We examined specimens of 818 of the 1096 described species (75%) and found that secondary sexual traits are present in males of 91% of the surveyed species. Scent pads and scent patches on the wings and brush organs associated with the genitalia were probably present in the common ancestor of Eumaeini and are widespread throughout the tribe. Brush organs and scent pads are negatively correlated across the phylogeny, exhibiting a trade-off in which lineages with brush organs are unlikely to regain scent pads and vice versa. In contrast, scent patches seem to facilitate the evolution of scent pads, although they are readily lost once scent pads have evolved. Our results illustrate the complex interplay between natural and sexual selection in the origin and maintenance of multiple male secondary sexual characteristics and highlight the potential role of sexual selection spurring diversification in this lineage.


Assuntos
Borboletas , Animais , Evolução Biológica , Masculino , Fenótipo , Feromônios , Filogenia
3.
Biol Lett ; 16(4): 20200103, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32315595

RESUMO

Wind is a critical factor in the ecology of pollinating insects such as bees. However, the role of wind in determining patterns of bee abundance and floral visitation rates across space and time is not well understood. Orchid bees are an important and diverse group of neotropical pollinators that harvest pollen, nectar and resin from plants. In addition, male orchid bees collect volatile scents that they store in special chambers in their hind legs, and for which the wind-based dispersal of odours may play a particularly crucial role. Here, we take advantage of this specialized scent foraging behaviour to study the effects of wind on orchid bee visitation at scent sources in a fragmented tropical forest ecosystem. Consistent with previous work, forest cover increased orchid bee visitation. In addition, we find that temporal changes in wind speed and turbulence increase visitation to scent stations within sites. These results suggest that the increased dispersal of attractive scents provided by wind and turbulence outweighs any biomechanical or energetic costs that might deter bees from foraging in these conditions. Overall, our results highlight the significance of wind in the ecology of these important pollinators in neotropical forests.


Assuntos
Ecossistema , Polinização , Animais , Abelhas , Flores , Florestas , Masculino , Néctar de Plantas , Vento
4.
J Exp Biol ; 219(Pt 18): 2819-2822, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27436135

RESUMO

Landing is an important but understudied behavior that flying animals must perform constantly. In still air, insects decelerate smoothly prior to landing by employing the relatively simple strategy of maintaining a constant rate of image expansion during their approach. However, it is unclear whether insects employ this strategy when faced with challenging flight environments. Here, we tested the effects of wind on bumblebees (Bombus impatiens) landing on flowers. We find that bees' approach paths to flowers shift from multidirectional in still air to unidirectional in wind, regardless of flower orientation. In addition, bees landing in a 3.5 m s-1 headwind do not decelerate smoothly, but rather maintain a high flight speed until contact, resulting in higher peak decelerations upon impact. These findings suggest that wind has a strong influence on insect landing behavior and performance, with important implications for the design of micro aerial vehicles and the ecomechanics of insect flight.

5.
J Exp Biol ; 218(Pt 17): 2728-37, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26333927

RESUMO

Locomotion through structurally complex environments is fundamental to the life history of most flying animals, and the costs associated with movement through clutter have important consequences for the ecology and evolution of volant taxa. However, few studies have directly investigated how flying animals navigate through cluttered environments, or examined which aspects of flight performance are most critical for this challenging task. Here, we examined how body size, acceleration and obstacle orientation affect the flight of bumblebees in an artificial, cluttered environment. Non-steady flight performance is often predicted to decrease with body size, as a result of a presumed reduction in acceleration capacity, but few empirical tests of this hypothesis have been performed in flying animals. We found that increased body size is associated with impaired flight performance (specifically transit time) in cluttered environments, but not with decreased peak accelerations. In addition, previous studies have shown that flying insects can produce higher accelerations along the lateral body axis, suggesting that if maneuvering is constrained by acceleration capacity, insects should perform better when maneuvering around objects laterally rather than vertically. Our data show that bumblebees do generate higher accelerations in the lateral direction, but we found no difference in their ability to pass through obstacle courses requiring lateral versus vertical maneuvering. In sum, our results suggest that acceleration capacity is not a primary determinant of flight performance in clutter, as is often assumed. Rather than being driven by the scaling of acceleration, we show that the reduced flight performance of larger bees in cluttered environments is driven by the allometry of both path sinuosity and mean flight speed. Specifically, differences in collision-avoidance behavior underlie much of the variation in flight performance across body size, with larger bees negotiating obstacles more cautiously. Thus, our results show that cluttered environments challenge the flight capacity of insects, but in surprising ways that emphasize the importance of behavioral and ecological context for understanding flight performance in complex environments.


Assuntos
Abelhas/fisiologia , Meio Ambiente , Voo Animal , Aceleração , Animais , Tamanho Corporal , Orientação
6.
J Exp Biol ; 218(Pt 9): 1444-52, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25767146

RESUMO

Airflow conditions close to the Earth's surface are often complex, posing challenges to flight stability and control for volant taxa. Relatively little is known about how well flying animals can contend with complex, adverse air flows, or about the flight control mechanisms used by animals to mitigate wind disturbances. Several recent studies have examined flight in the unsteady von Kármán vortex streets that form behind cylinders, generating flow disturbances that are predictable in space and time; these structures are relatively rare in nature, because they occur only the immediate, downstream vicinity of an object. In contrast, freestream turbulence is characterized by rapid, unpredictable flow disturbances across a wide range of spatial and temporal scales, and is nearly ubiquitous in natural habitats. Hummingbirds are ideal organisms for studying the influence of freestream turbulence on flight, as they forage in a variety of aerial conditions and are powerful flyers. We filmed ruby-throated hummingbirds (Archilochus colubris) maintaining position at a feeder in laminar and strongly turbulent (intensity ∼15%) airflow environments within a wind tunnel and compared their mean kinematics of the head, body, tail and wing, as well as variability in these parameters. Hummingbirds exhibited remarkably stable head position and orientation in both smooth and turbulent flow while maintaining position at the feeder. However, the hummingbird's body was less stable in turbulent flow and appeared to be most sensitive to disturbances along the mediolateral axis, displaying large lateral accelerations, translations and rolling motions during flight. The hummingbirds mitigated these disturbances by increasing mean wing stroke amplitude and stroke plane angle, and by varying these parameters asymmetrically between the wings and from one stroke to the next. They also actively varied the orientation and fan angle of the tail, maintaining a larger mean fan angle when flying in turbulent flow; this may improve their passive stability, but probably incurs an energetic cost as a result of increased drag. Overall, we observed many of the same kinematic changes noted previously for hummingbirds flying in a von Kármán vortex street, but we also observed kinematic changes associated with high force production, similar to those seen during load-lifting or high-speed flight. These findings suggest that flight may be particularly costly in fully mixed, freestream turbulence, which is the flow condition that hummingbirds are likely to encounter most frequently in natural habitats.


Assuntos
Movimentos do Ar , Aves/fisiologia , Voo Animal , Animais , Fenômenos Biomecânicos , Feminino , Orientação , Vento
7.
Sci Rep ; 14(1): 13760, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877021

RESUMO

Elevated atmospheric carbon dioxide (eCO2) can affect plant growth and physiology, which can, in turn, impact herbivorous insects, including by altering pollen or plant tissue nutrition. Previous research suggests that eCO2 can reduce pollen nutrition in some species, but it is unknown whether this effect is consistent across flowering plant species. We experimentally quantified the effects of eCO2 across multiple flowering plant species on plant growth in 9 species and pollen chemistry (%N an estimate for protein content and nutrition in 12 species; secondary chemistry in 5 species) in greenhouses. For pollen nutrition, only buckwheat significantly responded to eCO2, with %N increasing in eCO2; CO2 treatment did not affect pollen amino acid composition but altered secondary metabolites in buckwheat and sunflower. Plant growth under eCO2 exhibited two trends across species: plant height was taller in 44% of species and flower number was affected for 63% of species (3 species with fewer and 2 species with more flowers). The remaining growth metrics (leaf number, above-ground biomass, flower size, and flowering initiation) showed divergent, species-specific responses, if any. Our results indicate that future eCO2 is unlikely to uniformly change pollen chemistry or plant growth across flowering species but may have the potential to alter ecological interactions, or have particularly important effects on specialized pollinators.


Assuntos
Dióxido de Carbono , Pólen , Dióxido de Carbono/metabolismo , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Atmosfera/química , Especificidade da Espécie , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/metabolismo , Magnoliopsida/fisiologia , Flores/crescimento & desenvolvimento , Flores/metabolismo , Desenvolvimento Vegetal/efeitos dos fármacos
8.
J Exp Biol ; 216(Pt 22): 4299-309, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24031057

RESUMO

Our understanding of how variable wind in natural environments affects flying insects is limited because most studies of insect flight are conducted in either smooth flow or still air conditions. Here, we investigate the effects of structured, unsteady flow (the von Karman vortex street behind a cylinder) on the flight performance of bumblebees (Bombus impatiens). Bumblebees are 'all-weather' foragers and thus frequently experience variable aerial conditions, ranging from fully mixed, turbulent flow to unsteady, structured vortices near objects such as branches and stems. We examined how bumblebee flight performance differs in unsteady versus smooth flow, as well as how the orientation of unsteady flow structures affects their flight performance, by filming bumblebees flying in a wind tunnel under various flow conditions. The three-dimensional flight trajectories and orientations of bumblebees were quantified in each of three flow conditions: (1) smooth flow, (2) the unsteady wake of a vertical cylinder (inducing strong lateral disturbances) and (3) the unsteady wake of a horizontal cylinder (inducing strong vertical disturbances). In both unsteady conditions, bumblebees attenuated the disturbances induced by the wind quite effectively, but still experienced significant translational and rotational fluctuations as compared with flight in smooth flow. Bees appeared to be most sensitive to disturbance along the lateral axis, displaying large lateral accelerations, translations and rolling motions in response to both unsteady flow conditions, regardless of orientation. Bees also displayed the greatest agility around the roll axis, initiating voluntary casting maneuvers and correcting for lateral disturbances mainly through roll in all flow conditions. Both unsteady flow conditions reduced the upstream flight speed of bees, suggesting an increased cost of flight in unsteady flow, with potential implications for foraging patterns and colony energetics in natural, variable wind environments.


Assuntos
Movimentos do Ar , Abelhas/fisiologia , Voo Animal/fisiologia , Modelos Biológicos , Orientação/fisiologia , Animais , Fenômenos Biomecânicos , Metabolismo Energético/fisiologia , Gravação em Vídeo
9.
Sci Adv ; 6(24): eaay6169, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32582845

RESUMO

Most cycads engage in brood-site pollination mutualisms, yet the mechanism by which the Cycadales entice pollination services from diverse insect mutualists remains unknown. Here, we characterize a push-pull pollination mechanism between a New World cycad and its weevil pollinators that mirrors the mechanism between a distantly related Old World cycad and its thrips pollinators. The behavioral convergence between weevils and thrips, combined with molecular phylogenetic dating and a meta-analysis of thermogenesis and coordinated patterns of volatile attraction and repulsion suggest that a push-pull pollination mutualism strategy is ancestral in this ancient, dioecious plant group. Hence, it may represent one of the earliest insect/plant pollination mechanisms, arising long before the evolution of visual floral signaling commonly used by flowering plants.

10.
Elife ; 72018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30117804

RESUMO

Lab organisms are valuable in part because of large-scale experiments like screens, but performing such experiments over long time periods by hand is arduous and error-prone. Organism-handling robots could revolutionize large-scale experiments in the way that liquid-handling robots accelerated molecular biology. We developed a modular automated platform for large-scale experiments (MAPLE), an organism-handling robot capable of conducting lab tasks and experiments, and then deployed it to conduct common experiments in Saccharomyces cerevisiae, Caenorhabditis elegans, Physarum polycephalum, Bombus impatiens, and Drosophila melanogaster. Focusing on fruit flies, we developed a suite of experimental modules that permitted the automated collection of virgin females and execution of an intricate and laborious social behavior experiment. We discovered that (1) pairs of flies exhibit persistent idiosyncrasies in social behavior, which (2) require olfaction and vision, and (3) social interaction network structure is stable over days. These diverse examples demonstrate MAPLE's versatility for automating experimental biology.


Assuntos
Drosophila melanogaster/genética , Biologia Molecular/tendências , Robótica/instrumentação , Animais , Caenorhabditis elegans/genética , Drosophila melanogaster/fisiologia , Robótica/tendências , Saccharomyces cerevisiae/genética , Comportamento Social
11.
Nat Commun ; 9(1): 1201, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615611

RESUMO

Individuals in social insect colonies cooperate to perform collective work. While colonies often respond to changing environmental conditions by flexibly reallocating workers to different tasks, the factors determining which workers switch and why are not well understood. Here, we use an automated tracking system to continuously monitor nest behavior and foraging activity of uniquely identified workers from entire bumble bee (Bombus impatiens) colonies foraging in a natural outdoor environment. We show that most foraging is performed by a small number of workers and that the intensity and distribution of foraging is actively regulated at the colony level in response to forager removal. By analyzing worker nest behavior before and after forager removal, we show that spatial fidelity of workers within the nest generates uneven interaction with relevant localized information sources, and predicts which workers initiate foraging after disturbance. Our results highlight the importance of spatial fidelity for structuring information flow and regulating collective behavior in social insect colonies.


Assuntos
Abelhas/fisiologia , Comportamento Alimentar , Comportamento de Nidação , Comportamento Social , Animais , Ecologia , Processamento de Imagem Assistida por Computador , Análise de Componente Principal
12.
Nat Commun ; 9(1): 2180, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29855478

RESUMO

The original version of the Article contained incorrect citation information in reference 67. The reference should read "Russell, A. L., Morrison, S. J., Moschonas, E. H. & Papaj, D. R. Patterns of pollen and nectar foraging specialization by bumblebees over multiple timescales using RFID. Sci. Rep. 7, 1-13 (2017)." This error has now been corrected in the PDF and HTML versions of the Article.

13.
Science ; 362(6415): 683-686, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30409882

RESUMO

Neonicotinoid pesticides can negatively affect bee colonies, but the behavioral mechanisms by which these compounds impair colony growth remain unclear. Here, we investigate imidacloprid's effects on bumblebee worker behavior within the nest, using an automated, robotic platform for continuous, multicolony monitoring of uniquely identified workers. We find that exposure to field-realistic levels of imidacloprid impairs nursing and alters social and spatial dynamics within nests, but that these effects vary substantially with time of day. In the field, imidacloprid impairs colony thermoregulation, including the construction of an insulating wax canopy. Our results show that neonicotinoids induce widespread disruption of within-nest worker behavior that may contribute to impaired growth, highlighting the potential of automated techniques for characterizing the multifaceted, dynamic impacts of stressors on behavior in bee colonies.


Assuntos
Abelhas/efeitos dos fármacos , Regulação da Temperatura Corporal/efeitos dos fármacos , Exposição Ambiental , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Comportamento de Nidação/efeitos dos fármacos , Nitrocompostos/toxicidade , Animais , Abelhas/fisiologia , Comportamento Social
14.
PLoS One ; 10(9): e0136487, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26332211

RESUMO

A fundamental challenge common to studies of animal movement, behavior, and ecology is the collection of high-quality datasets on spatial positions of animals as they change through space and time. Recent innovations in tracking technology have allowed researchers to collect large and highly accurate datasets on animal spatiotemporal position while vastly decreasing the time and cost of collecting such data. One technique that is of particular relevance to the study of behavioral ecology involves tracking visual tags that can be uniquely identified in separate images or movie frames. These tags can be located within images that are visually complex, making them particularly well suited for longitudinal studies of animal behavior and movement in naturalistic environments. While several software packages have been developed that use computer vision to identify visual tags, these software packages are either (a) not optimized for identification of single tags, which is generally of the most interest for biologists, or (b) suffer from licensing issues, and therefore their use in the study of animal behavior has been limited. Here, we present BEEtag, an open-source, image-based tracking system in Matlab that allows for unique identification of individual animals or anatomical markers. The primary advantages of this system are that it (a) independently identifies animals or marked points in each frame of a video, limiting error propagation, (b) performs well in images with complex backgrounds, and (c) is low-cost. To validate the use of this tracking system in animal behavior, we mark and track individual bumblebees (Bombus impatiens) and recover individual patterns of space use and activity within the nest. Finally, we discuss the advantages and limitations of this software package and its application to the study of animal movement, behavior, and ecology.


Assuntos
Abelhas , Processamento de Imagem Assistida por Computador , Locomoção , Software , Animais , Abelhas/fisiologia , Comportamento Animal , Processamento de Imagem Assistida por Computador/economia , Software/economia , Gravação em Vídeo
15.
J Morphol ; 272(12): 1409-21, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21915894

RESUMO

Although there is mounting evidence that passive mechanical dynamics of insect wings play an integral role in insect flight, our understanding of the structural details underlying insect wing flexibility remains incomplete. Here, we use comparative morphological and mechanical techniques to illuminate the function and diversity of two mechanisms within Odonata wings presumed to affect dynamic wing deformations: flexible resilin vein-joints and cuticular spikes. Mechanical tests show that joints with more resilin have lower rotational stiffness and deform more in response to a load applied to an intact wing. Morphological studies of 12 species of Odonata reveal that resilin joints and cuticular spikes are widespread taxonomically, yet both traits display a striking degree of morphological and functional diversity that follows taxonomically distinct patterns. Interestingly, damselfly wings (suborder Zygoptera) are mainly characterized by vein-joints that are double-sided (containing resilin both dorsally and ventrally), whereas dragonfly wings (suborder Epiprocta) are largely characterized by single-sided vein-joints (containing resilin either ventrally or dorsally, but not both). The functional significance and diversity of resilin joints and cuticular spikes could yield insight into the evolutionary relationship between form and function of wings, as well as revealing basic principles of insect wing mechanical design.


Assuntos
Proteínas de Insetos/fisiologia , Insetos/fisiologia , Animais , Fenômenos Biomecânicos , Classificação , Voo Animal/fisiologia , Asas de Animais/anatomia & histologia , Asas de Animais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA