Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Virol ; 86(13): 7310-25, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22532673

RESUMO

Cidofovir or (S)-HPMPC is one of the three antiviral drugs that might be used for the treatment of orthopoxvirus infections. (S)-HPMPC and its 2,6-diaminopurine counterpart, (S)-HPMPDAP, have been described to select, in vitro, for drug resistance mutations in the viral DNA polymerase (E9L) gene of vaccinia virus (VACV). Here, to extend our knowledge of drug resistance development among orthopoxviruses, we selected, in vitro, camelpox viruses (CMLV) resistant to (S)-HPMPDAP and identified a single amino acid change, T831I, and a double mutation, A314V+A684V, within E9L. The production of recombinant CMLV and VACV carrying these amino acid substitutions (T831I, A314V, or A314V+A684V) demonstrated clearly their involvement in conferring reduced sensitivity to viral DNA polymerase inhibitors, including (S)-HPMPDAP. Both CMLV and VACV harboring the A314V change showed comparable drug-susceptibility profiles to various antivirals and similar impairments in viral growth. In contrast, the single change T831I and the double change A314V+A684V in VACV were responsible for increased levels of drug resistance and for cross-resistance to viral DNA polymerase antivirals that were not observed with their CMLV counterparts. Each amino acid change accounted for an attenuated phenotype of VACV in vivo. Modeling of E9L suggested that the T→I change at position 831 might abolish hydrogen bonds between E9L and the DNA backbone and have a direct impact on the incorporation of the acyclic nucleoside phosphonates. Our findings demonstrate that drug-resistance development in two related orthopoxvirus species may impact drug-susceptibility profiles and viral fitness differently.


Assuntos
Antivirais/farmacologia , DNA Polimerase Dirigida por DNA/genética , Farmacorresistência Viral , Mutação de Sentido Incorreto , Orthopoxvirus/efeitos dos fármacos , Vaccinia virus/efeitos dos fármacos , Substituição de Aminoácidos , Animais , Linhagem Celular , Cidofovir , Citosina/análogos & derivados , Citosina/farmacologia , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Organofosfonatos/farmacologia , Orthopoxvirus/enzimologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Seleção Genética , Vaccinia virus/enzimologia , Ensaio de Placa Viral
2.
J Virol ; 85(10): 5016-26, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21367889

RESUMO

The vaccinia virus (VACV) Lister strain was one of the vaccine strains that enabled smallpox eradication. Although the strain is most often harmless, there have been numerous incidents of mild to life-threatening accidents with this strain and others. In an attempt to further attenuate the Lister strain, we investigated the role of 5 genomic regions known to be deleted in the modified VACV Ankara (MVA) genome in virulence in immunodeficient mice, immunogenicity in immunocompetent mice, and vaccine efficacy in a cowpox virus challenge model. Lister mutants were constructed so as to delete each of the 5 regions or various combinations of these regions. All of the mutants replicated efficiently in tissue culture except region I mutants, which multiplied more poorly in human cells than the parental strain. Mutants with single deletions were not attenuated or only moderately so in athymic nude mice. Mutants with multiple deletions were more highly attenuated than those with single deletions. Deleting regions II, III, and V together resulted in total attenuation for nude mice and partial attenuation for SCID mice. In immunocompetent mice, the Lister deletion mutants induced VACV specific humoral responses equivalent to those of the parental strain but in some cases lower cell-mediated immune responses. All of the highly attenuated mutants protected mice from a severe cowpox virus challenge at low vaccine doses. The data suggest that several of the Lister mutants combining multiple deletions could be used in smallpox vaccination or as live virus vectors at doses equivalent to those used for the traditional vaccine while displaying increased safety.


Assuntos
Deleção de Sequência , Vacina Antivariólica/genética , Vacina Antivariólica/imunologia , Vaccinia virus/genética , Animais , Anticorpos Antivirais/sangue , Linhagem Celular , Varíola Bovina/prevenção & controle , Varíola Bovina/virologia , Vírus da Varíola Bovina/imunologia , Vírus da Varíola Bovina/patogenicidade , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos SCID , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Replicação Viral
3.
Biol Cell ; 103(7): 319-31, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21554243

RESUMO

BACKGROUND INFORMATION: Vaccinia virus (VACV) was used as a surrogate of variola virus (genus Orthopoxvirus), the causative agent of smallpox, to study orthopoxvirus infection. VACV infects cells via attachment and fusion of the viral membrane with the host cell membrane. Glycosphingolipids, expressed in multiple organs, are major components of lipid rafts and have been associated with the infectious route of several pathogens. RESULTS: We demonstrate that the VACV-WR (VACV Western-Reserve strain) displays no binding to Cer (ceramide) or to Gal-Cer (galactosylceramide), but binds to a natural sulfated derivative of these molecules: the Sulf (sulfatide) 3' sulfogalactosylceramide. The interaction between Sulf and VACV-WR resulted in a time-dependent inhibition of virus infection. Virus cell attachment was the crucial step inhibited by Sulf. Electron microscopy showed that SUVs (small unilamellar vesicles) enriched in Sulf bound to VACV particles. Both the A27 and L5 viral membrane proteins were shown to interact with Sulf, indicating that they could be the major viral ligands for Sulf. Soluble Sulf was successful in preventing mortality, but not morbidity, in a lethal mouse model infection with VACV-WR. CONCLUSIONS: Together the results suggest that Sulf could play a role as an alternate receptor for VACV-WR and probably other Orthopoxviruses.


Assuntos
Sulfoglicoesfingolipídeos/metabolismo , Sulfoglicoesfingolipídeos/farmacologia , Vaccinia virus/efeitos dos fármacos , Vaccinia virus/fisiologia , Vacínia/prevenção & controle , Vacínia/virologia , Animais , Linhagem Celular Tumoral , Ceramidas/metabolismo , Cricetinae , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Galactosilceramidas/metabolismo , Humanos , Ligantes , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Relação Estrutura-Atividade , Sulfoglicoesfingolipídeos/uso terapêutico , Vacínia/tratamento farmacológico , Vaccinia virus/metabolismo , Vírus da Varíola/fisiologia , Proteínas Virais/química , Proteínas Virais/metabolismo
4.
Virol J ; 8: 249, 2011 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-21600011

RESUMO

BACKGROUND: The genus Nairovirus in the family Bunyaviridae contains 34 tick-borne viruses classified into seven serogroups. Hazara virus (HAZV) belongs to the Crimean-Congo hemorrhagic fever (CCHF) serogroup that also includes CCHF virus (CCHFV) a major pathogen for humans. HAZV is an interesting model to study CCHFV due to a close serological and phylogenetical relationship and a classification which allows handling in a BSL2 laboratory. Nairoviruses are characterized by a tripartite negative-sense single stranded RNA genome (named L, M and S segments) that encode the RNA polymerase, the Gn-Gc glycoproteins and the nucleoprotein (NP), respectively. Currently, there are neither vaccines nor effective therapies for the treatment of any bunyavirus infection in humans. In this study we report, for the first time, the use of RNA interference (RNAi) as an approach to inhibit nairovirus replication. RESULTS: Chemically synthesized siRNAs were designed to target the mRNA produced by the three genomic segments. We first demonstrated that the siRNAs targeting the NP mRNA displayed a stronger antiviral effect than those complementary to the L and M transcripts in A549 cells. We further characterized the two most efficient siRNAs showing, that the induced inhibition is specific and associated with a decrease in NP synthesis during HAZV infection. Furthermore, both siRNAs depicted an antiviral activity when used before and after HAZV infection. We next showed that HAZV was sensitive to ribavirin which is also known to inhibit CCHFV. Finally, we demonstrated the additive or synergistic antiviral effect of siRNAs used in combination with ribavirin. CONCLUSIONS: Our study highlights the interest of using RNAi (alone or in combination with ribavirin) to treat nairovirus infection. This approach has to be considered for the development of future antiviral compounds targeting CCHFV, the most pathogenic nairovirus.


Assuntos
Antivirais/farmacologia , Produtos Biológicos/farmacologia , Nairovirus/efeitos dos fármacos , Nairovirus/fisiologia , RNA Interferente Pequeno/farmacologia , Ribavirina/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Linhagem Celular , Chlorocebus aethiops , Sinergismo Farmacológico , Humanos , Testes de Sensibilidade Microbiana
5.
J Gen Virol ; 91(Pt 1): 189-98, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19812268

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a highly pathogenic, tick-borne member of the family Bunyaviridae and the genus Nairovirus. To better elucidate the pathogenesis of CCHFV, we analysed the host innate immune response induced in antigen-presenting cells (APCs) infected in vitro by CCHFV. Monocyte-derived dendritic cells (DCs) and macrophages (MPs) were both shown to be permissive for CCHFV and to replicate the virus, as monitored by genomic and antigenomic strand quantification. Virus replication was, however, controlled, corroborating an efficient alpha interferon-induced response. The upregulation of CD-83 and CD-86 indicated that CCHFV induced a partial maturation of DCs, which were also shown to activate the secretion of interleukin (IL)-6 and IL-8, but no tumour necrosis factor alpha (TNF-alpha). On the other hand, in MPs, CCHFV infection elicited a high IL-6 and TNF-alpha response and a moderate chemokine response. Nevertheless, when we compared these APC responses with those seen after infection with Dugbe virus (DUGV), a mildly pathogenic virus genetically close to CCHFV, we found that, in spite of some similarities, DUGV induced a higher cytokine/chemokine response in MPs. These results suggest that CCHFV is able to inhibit the activation of inflammatory mediators selectively in infection in vitro and that these differences could be relevant in pathogenesis.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/virologia , Regulação da Expressão Gênica , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Vírus da Febre Hemorrágica da Crimeia-Congo/patogenicidade , Nairovirus/imunologia , Nairovirus/patogenicidade , Antígenos CD/biossíntese , Antígeno B7-2/biossíntese , Células Cultivadas , Quimiocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/virologia , Humanos , Imunoglobulinas/biossíntese , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Macrófagos/imunologia , Macrófagos/virologia , Glicoproteínas de Membrana/biossíntese , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima , Replicação Viral , Antígeno CD83
6.
Antimicrob Agents Chemother ; 53(6): 2579-88, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19307376

RESUMO

In view of the threat of the potential use of variola virus in a terrorist attack, considerable efforts have been performed to develop new antiviral strategies against orthopoxviruses. Here we report on the use of RNA interference, either alone or in combination with cidofovir, as an approach to inhibit orthopoxvirus replication. Two selected small interfering RNAs (siRNAs), named siB1R-2 and siG7L-1, and a previously reported siRNA, i.e., siD5R-2 (which targets the viral D5R mRNA), were evaluated for antiviral activity against vaccinia virus (VACV) by plaque reduction and virus yield assays. siB1R-2 and siG7L-1, administered before or after viral infection, reduced VACV replication by more than 90%. Also, these two siRNAs decreased monkeypox virus replication by 95% at a concentration of 1 nM. siB1R-2 and siG7L-1 were demonstrated to specifically silence their corresponding transcripts, i.e., B1R and G7L mRNAs, without induction of a beta interferon response. Strong synergistic effects were observed when siB1R-2, siG7L-1, or siD5R-2 was combined with cidofovir. In addition, the antiviral activities of these three siRNAs were evaluated against VACV resistant to cidofovir and other acyclic nucleoside phosphonates. siG7L-1 and siD5R-2 remained active against four of five VACV mutants, while siB1R-2 showed activity against only one of the mutants. Our results showed that siRNAs are potent inhibitory agents in vitro, not only against wild-type VACV but also against several cidofovir-resistant VACV. Furthermore, we showed that a combined therapy using siRNA and cidofovir may be useful in the treatment of poxvirus infections.


Assuntos
Antivirais/farmacologia , Citosina/análogos & derivados , Organofosfonatos/farmacologia , RNA Interferente Pequeno/farmacologia , Vaccinia virus/efeitos dos fármacos , Proteínas do Core Viral/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Linhagem Celular , Cidofovir , Citosina/farmacologia , DNA Polimerase Dirigida por DNA/genética , Humanos , Interferon gama/biossíntese , Proteínas do Core Viral/genética , Proteínas Virais/genética
7.
Antivir Ther ; 14(5): 655-62, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19704168

RESUMO

BACKGROUND: The Epstein-Barr virus (EBV) protease (PR), coded by the BVRF2 gene, is essential for the maturation of the viral capsid and viral DNA packaging during the late stage of the EBV lytic cycle. Like the other herpesvirus serine PRs, EBV PR could be a target for the inhibition of EBV replication. To date, no data have been reported on the inhibition of EBV PR messenger RNA (mRNA) by small interfering RNA (siRNA). METHODS: In this study, siRNAs targeting EBV PR were delivered to the epithelial 293 cell line stably transfected with the complete B95-8 EBV episome. EBV DNA and PR mRNA were quantified by real-time PCR in cells and supernatant, protein expression was assessed by immunoblotting, and production of EBV infectious particles in the culture medium was measured by Raji cell superinfection. RESULTS: The EBV PR mRNA within the cells was reduced by 73%, the PR protein by 35% and the amount of virus in the cell supernatant was drastically decreased by 86% or 95%, depending on the method. CONCLUSIONS: The strong effect of the siRNA targeting EBV PR on EBV replication attests to the crucial role played by EBV PR in the production of infectious particles and suggests that targeting this enzyme can be a new strategy against EBV-associated diseases where virus replication occurs.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/fisiologia , Peptídeo Hidrolases/metabolismo , RNA Interferente Pequeno , Replicação Viral/efeitos dos fármacos , Linhagem Celular , Herpesvirus Humano 4/efeitos dos fármacos , Herpesvirus Humano 4/enzimologia , Herpesvirus Humano 4/genética , Humanos , Peptídeo Hidrolases/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Virais/genética , Proteínas Virais/metabolismo
8.
Antivir Ther ; 13(3): 357-68, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18572748

RESUMO

BACKGROUND: Concerns about the potential use of smallpox in bioterrorism have stimulated interest in the development of novel antiviral treatments. Currently, there are no effective therapies against smallpox and new treatment strategies are greatly needed. METHODS: In this study, specifically designed small interfering RNAs (siRNAs), targeting five proteins essential for orthopoxvirus replication, were investigated for their ability to inhibit vaccinia virus strain Western Reserve (VACVWR) replication. RESULTS: Among these siRNAs, 100 nM siD5R-2, an siRNA targeting the D5 protein, decreased VACVWR replication up to 90% when used either prophylactically or therapeutically in human lung carcinoma A549 cells. This siRNA induced a striking concentration-dependent inhibition of VACVWR replication and a prolonged prophylactic antiviral effect that lasted for 72 h, at a concentration of 100 nM. Confocal microscopy of Alexa-siD5R-2-treated VACVWR-infected cells confirmed a decrease in viral replication. Furthermore, siD5R-2 was shown to specifically reduce the D5R mRNA and protein expression using real-time reverse transcriptase-PCR and western blotting analysis, without inducing interferon-13 in A549 cells. We also demonstrated the antiviral potency of siD5R-2 against different pathogenic orthopoxviruses, such as cowpox and monkeypox viruses, which were inhibited up to 70% at the lowest concentration (1 nM) tested. Finally, siD5R-2 showed antiviral effects in VACVWR-infected human keratinocyte and fibroblast cell cultures. CONCLUSIONS: These results suggest that siD5R-2 could be a potential candidate to treat poxvirus infections.


Assuntos
Regulação Viral da Expressão Gênica , Terapia Genética/métodos , Orthopoxvirus/genética , Infecções por Poxviridae/terapia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Virais/genética , Replicação Viral/genética , Western Blotting , Linhagem Celular Tumoral , Vírus da Varíola Bovina/genética , Vírus da Varíola Bovina/metabolismo , Regulação para Baixo , Fibroblastos/metabolismo , Fibroblastos/virologia , Imunofluorescência , Humanos , Interferon beta/metabolismo , Queratinócitos/metabolismo , Queratinócitos/virologia , Monkeypox virus/genética , Monkeypox virus/metabolismo , Orthopoxvirus/metabolismo , Infecções por Poxviridae/metabolismo , Infecções por Poxviridae/virologia , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Transfecção , Vaccinia virus/genética , Vaccinia virus/metabolismo , Proteínas Virais/metabolismo
9.
Antivir Ther ; 13(8): 977-90, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19195323

RESUMO

BACKGROUND: ST-246 is a potent anti-orthopoxviral molecule targeting the F13L protein of vaccinia virus, which is involved in the wrapping of viruses. The discrepancy in sensitivities of several orthopoxviruses to ST-246 has raised questions about potential differences in their replicative cycles and/or the presence of another drug target. METHODS: Density gradients were used to evaluate the differences between the viral cycles of vaccinia, cowpox and camelpox viruses. Also, to investigate if ST-246 inhibits a single target, we compared its activity to that of small interfering RNAs designed to silence the F13L gene (siF13Ls). RESULTS: We showed that the spread of vaccinia virus involved both intracellular and extracellular enveloped viruses, whereas both cowpox and camelpox viruses seemed to propagate via non-enveloped intracellular forms and cell-associated viral particles. Although ST-246 exerted a clear antiviral activity by interfering with the egress of the virus from infected cells, we observed that cowpox and camelpox viruses, in contrast to vaccinia virus, could be directed towards a lytic cycle under ST-246 treatment. We specifically knocked down the F13L transcripts of vaccinia and camelpox viruses by > 85%, reduced virus progeny by 90% and showed that siF13Ls affect camelpox and vaccinia virus propagation differently. Flow cytometry data validated that ST-246 interfered with the activity of the F13L protein, whereas siF13Ls silenced the F13L gene. CONCLUSIONS: Our observations support that vaccinia, cowpox and camelpox viruses exhibit different levels of sensitivity to ST-246 because of dissimilarities between their ways of propagation, and provide a better understanding of the mode of action of ST-246.


Assuntos
Benzamidas/farmacologia , Vírus da Varíola Bovina/efeitos dos fármacos , Isoindóis/farmacologia , Proteínas de Membrana/metabolismo , Orthopoxvirus/efeitos dos fármacos , Vaccinia virus/efeitos dos fármacos , Proteínas do Envelope Viral/metabolismo , Antivirais/farmacologia , Linhagem Celular , Inativação Gênica , Humanos , RNA Interferente Pequeno , Especificidade da Espécie , Replicação Viral/efeitos dos fármacos
10.
Antivir Ther ; 12(8): 1205-16, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18240860

RESUMO

BACKGROUND: The potential use of variola virus as a biological weapon has renewed efforts in the development of antiviral agents against orthopoxviruses. ST-246 [4-trifluoromethyl-N-(3,3a,4,4a,5,5a,6,6a-octahydro-1,3-di oxo-4,6-ethenocycloprop [f]isoindol-2(1 H)-yl)-benzamide] is an anti-orthopoxvirus compound active against several orthopoxviruses including vaccinia virus (VV), cowpox virus (CPV), camelpox virus (CMLV), ectromelia virus (ECTV) and variola virus in cell culture. The compound has been shown to inhibit the release of extracellular virus by targeting the F13L W protein and to protect mice from W, CPV and ECTV orthopoxvirus-induced disease. METHODS: The antiviral activity of ST-246 was assessed against extracellular and intracellular W, CPV and CMLV production in human embryonic lung (HEL) fibroblasts and primary human keratinocyte (PHK) cell monolayers, as well as in three-dimensional raft cultures. RESULTS: ST-246 inhibited preferentially the production of extracellular virus compared with intracellular virus production in HEL and PHK cells (for W) and in PHK cells (for CMLV). In organotypic epithelial raft cultures, ST-246 at 20 microg/ml inhibited extracellular W and CMLV production by 6 logs, whereas intracellular virus yield was reduced by 2 logs. In the case of CPV, both extracellular and intracellular virus production were completely inhibited by ST-246 at 20 microg/ml. Histological sections of the infected rafts, treated with increasing amounts of drug, confirmed the antiviral activity of ST-246: the epithelium was protected and there was no evidence of viral infection. Electron microscopic examination confirmed the absence of intracellular enveloped virus forms in W-, CPV- and CMLV-infected cells treated with 10 microg/ml of ST-246. CONCLUSIONS: These data indicate that ST-246 is a potent anti-orthopoxvirus compound; the mode of inhibition is dependent on the virus and cell type.


Assuntos
Antivirais/farmacologia , Benzamidas/farmacologia , Isoindóis/farmacologia , Orthopoxvirus/efeitos dos fármacos , Células Cultivadas , Vírus da Varíola Bovina/efeitos dos fármacos , Vírus da Varíola Bovina/crescimento & desenvolvimento , Efeito Citopatogênico Viral/efeitos dos fármacos , Humanos , Orthopoxvirus/crescimento & desenvolvimento , Vaccinia virus/efeitos dos fármacos , Vaccinia virus/crescimento & desenvolvimento
11.
Nucleic Acids Res ; 31(16): 4950-7, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12907738

RESUMO

The decision to stop smallpox vaccination and the loss of specific immunity in a large proportion of the population could jeopardise world health due to the possibility of a natural or provoked re-emergence of smallpox. Therefore, it is mandatory to improve the current capability to prevent or treat such infections. The DNA repair protein uracil-DNA glycosylase (UNG) is one of the viral enzymes important for poxvirus pathogenesis. Consequently, the inhibition of UNG could be a rational strategy for the treatment of infections with poxviruses. In order to develop inhibitor assays for UNG, as a first step, we have characterised the recombinant vaccinia virus UNG (vUNG) and compared it with the human nuclear form (hUNG2) and catalytic fragment (hUNG) UNG. In contrast to hUNG2, vUNG is strongly inhibited in the presence of 7.5 mM MgCl(2). We have shown that highly purified vUNG is not inhibited by a specific uracil-DNA glycosylase inhibitor. Interestingly, both viral and human enzymes preferentially excise uracil when it is opposite to cytosine. The present study provides the basis for the design of specific inhibitors for vUNG.


Assuntos
DNA Glicosilases/metabolismo , Vaccinia virus/enzimologia , DNA/metabolismo , DNA Glicosilases/antagonistas & inibidores , DNA Glicosilases/genética , DNA de Cadeia Simples/metabolismo , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Isoenzimas/efeitos dos fármacos , Isoenzimas/genética , Isoenzimas/metabolismo , Cloreto de Magnésio/farmacologia , Oligonucleotídeos/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Uracila/metabolismo , Uracila-DNA Glicosidase , Vaccinia virus/genética , Proteínas Virais/farmacologia
12.
J Clin Virol ; 32(1): 47-52, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15572006

RESUMO

The possibility of mass population vaccination with smallpox vaccine implies the development of anti-vaccinia immunoglobulins for the treatment of severe side effects following vaccination. We have chosen to develop and validate the "gold standard method" (plaque reduction neutralization assay) to titrate neutralizing anti-vaccinia antibodies in two different French laboratories belonging to the Department of Defense (CRSSA) and to the French Health Products Safety Agency (Afssaps). The results of precision, linearity and accuracy of the method led to consider the method as validated. In parallel, we have prepared and lyophilized a pool of anti-vaccinia plasma samples issued from a unique donor and qualified this preparation versus the first British standard to use it as an in-house standard with a titer of 25 international units (IU). This work will allow to titrate, in IU, sera from vaccinated persons in order (i) to titrate purified anti-vaccinia immunoglobulin preparations for vaccine severe side effect treatments; (ii) to investigate the level of neutralizing antibodies in the general population; and (iii) to investigate clinical trials of new generation smallpox vaccines. In the future, this will allow comparability of studies on either smallpox vaccines or on the serological status of the population.


Assuntos
Imunoglobulinas/análise , Testes de Neutralização/métodos , Vacina Antivariólica/análise , Vaccinia virus/imunologia , Vacínia/imunologia , Animais , Anticorpos Antivirais/análise , Anticorpos Antivirais/sangue , Chlorocebus aethiops , Estudos de Avaliação como Assunto , Padrões de Referência , Vacinação , Vacínia/diagnóstico , Vaccinia virus/genética , Células Vero
13.
Antiviral Res ; 58(1): 73-9, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12719009

RESUMO

Ribavirin, interferon-alpha (IFN-alpha), 6-azauridine and glycyrrhizin were tested in vitro for their antiviral activities against 11 pathogenic flaviviruses belonging to principal antigenic complexes or individual serogroups of medical importance: dengue, Japanese encephalitis, mammalian tick-borne and yellow fever virus (YFV) groups. Antiviral activity was estimated by the reduction of the cytopathic effect of each flavivirus in Vero cells and by the reduction in virus titer. Cytotoxicity was evaluated by determining the inhibition of Trypan blue exclusion in confluent cell cultures and by the evaluation of the inhibitory effect on cell growth. The specificity of action of each tested compound was estimated by the selectivity index (CC(50)/EC(50)). IFN-alpha proved to be a selective and potent inhibitor of the replication of the 11 tested pathogenic flaviviruses. Ribavirin and 6-azauridine proved to be active on the replication of the 11 tested pathogenic flaviviruses at the concentrations which did not alter normal cell morphology, but they were not selective inhibitors when selectivity indices were evaluated with regard to the inhibition of cell growth because of their cytostatic effect. Glycyrrhizin inhibited the replication of flaviviruses at high non-cytotoxic concentrations. These antiflavivirus compounds should be further evaluated for their efficacy in the treatment of flavivirus infections in vivo.


Assuntos
Antivirais/farmacologia , Flavivirus/efeitos dos fármacos , Animais , Azauridina/farmacologia , Divisão Celular/efeitos dos fármacos , Chlorocebus aethiops , Flavivirus/crescimento & desenvolvimento , Flavivirus/metabolismo , Infecções por Flavivirus/tratamento farmacológico , Ácido Glicirrízico/farmacologia , Interferon-alfa/farmacologia , Ribavirina/farmacologia , Células Vero
14.
Viruses ; 5(3): 928-53, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23518578

RESUMO

Vaccinia virus (VACV) was used as a surrogate of variola virus (VARV) (genus Orthopoxvirus), the causative agent of smallpox, to study Orthopoxvirus infection. VARV is principally transmitted between humans by aerosol droplets. Once inhaled, VARV first infects the respiratory tract where it could encounter surfactant components, such as soluble pattern recognition receptors. Surfactant protein D (SP-D), constitutively present in the lining fluids of the respiratory tract, plays important roles in innate host defense against virus infection. We investigated the role of SP-D in VACV infection and studied the A27 viral protein involvement in the interaction with SP-D. Interaction between SP-D and VACV caused viral inhibition in a lung cell model. Interaction of SP-D with VACV was mediated by the A27 viral protein. Binding required Ca2+ and interactions were blocked in the presence of excess of SP-D saccharide ligands. A27, which lacks glycosylation, directly interacted with SP-D. The interaction between SP-D and the viral particle was also observed using electron microscopy. Infection of mice lacking SP-D (SP-D-/-) resulted in increased mortality compared to SP-D+/+ mice. Altogether, our data show that SP-D participates in host defense against the vaccinia virus infection and that the interaction occurs with the viral surface protein A27.


Assuntos
Proteínas de Transporte/metabolismo , Pulmão/imunologia , Proteína D Associada a Surfactante Pulmonar/imunologia , Vaccinia virus/metabolismo , Vacínia/imunologia , Proteínas Virais de Fusão/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Feminino , Humanos , Pulmão/metabolismo , Pulmão/virologia , Masculino , Proteínas de Membrana , Camundongos , Camundongos Knockout , Ligação Proteica , Proteína D Associada a Surfactante Pulmonar/genética , Proteína D Associada a Surfactante Pulmonar/metabolismo , Vacínia/genética , Vacínia/metabolismo , Vacínia/virologia , Vaccinia virus/genética , Vaccinia virus/imunologia , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/imunologia
15.
Vaccine ; 30(7): 1397-405, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22227123

RESUMO

Smallpox vaccination is the only currently effective mean to combat the threat of variola virus used as a bioterrorism agent, although it is responsible for a rare but serious complication, the postvaccinal encephalitis (PVE). Development of safer vaccines therefore is a high priority as the PVE physiopathology is not well understood to date. If vaccinia virus (VACV) is responsible for PVE by central nervous system (CNS) dissemination, trans-migration of the VACV across the blood-brain barrier (BBB) would be supposed to be essential. Given the complexity of the pathogenesis of vaccinia neurovirulence, an in vitro BBB model was used to explore the mechanism of VACV to induce BBB permeability. Two VACV strains were studied, the neurovirulent Western Reserve strain (VACV-WR) and the vaccine reference Lister strain (VACV-List). A mouse model was also developed to study the ability of these two viral strains to propagate in the brain from the blood compartment, their neurovirulence and their neuropathogenesis. In vitro, the loss of permeability resulted from the tight-junctions disruption was induced by virus replication. The ability of VACV to release infectious particles at the abluminal side suggests the capacity of both VACV strains to migrate across the BBB from the blood to the CNS. In vivo, the virus replication in mice CNS was strain-dependent. The VACV-WR laboratory strain proved to be neuroinvasive and neurovirulent, whereas the VACV-List strain is safe in physiological conditions. Mice PVE was observed only with VACV-WR in the co-infection model, when BBB opening was obtained by lipopolysaccharide (LPS) treatment. This study suggests that VACV is able to cross the BBB but encephalitis occurs only in the presence of a co-infection by bacteria. So, a model of co-infection, mimicked by LPS treatment, could have important implication towards the assessment of neurovirulence of new vaccines.


Assuntos
Barreira Hematoencefálica/patologia , Encefalomielite Aguda Disseminada/etiologia , Vacina Antivariólica/efeitos adversos , Varíola/prevenção & controle , Vacinação , Vaccinia virus/patogenicidade , Animais , Barreira Hematoencefálica/virologia , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Encéfalo/virologia , Capilares/patologia , Bovinos , Linhagem Celular , Chlorocebus aethiops , Coinfecção , Cricetinae , Encefalomielite Aguda Disseminada/patologia , Encefalomielite Aguda Disseminada/virologia , Feminino , Infecções por Bactérias Gram-Negativas/imunologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Permeabilidade , Varíola/imunologia , Varíola/virologia , Vacina Antivariólica/imunologia , Especificidade da Espécie , Vaccinia virus/imunologia , Replicação Viral
16.
Antiviral Res ; 96(2): 187-95, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22884885

RESUMO

Genetic and biochemical data have identified at least four viral proteins essential for vaccinia virus (VACV) DNA synthesis: the DNA polymerase E9, its processivity factor (the heterodimer A20/D4) and the primase/helicase D5. These proteins are part of the VACV replication complex in which A20 is a central subunit interacting with E9, D4 and D5. We hypothesised that molecules able to modulate protein-protein interactions within the replication complex may represent a new class of compounds with anti-orthopoxvirus activities. In this study, we adapted a forward duplex yeast two-hybrid assay to screen more than 27,000 molecules in order to identify inhibitors of A20/D4 and/or A20/D5 interactions. We identified two molecules that specifically inhibited both interactions in yeast. Interestingly, we observed that these compounds displayed a similar antiviral activity to cidofovir (CDV) against VACV in cell culture. We further showed that these molecules were able to inhibit the replication of another orthopoxvirus (i.e. cowpox virus), but not the herpes simplex virus type 1 (HSV-1), an unrelated DNA virus. We also demonstrated that the antiviral activity of both compounds correlated with an inhibition of VACV DNA synthesis. Hence, these molecules may represent a starting point for the development of new anti-orthopoxvirus drugs.


Assuntos
Antivirais/isolamento & purificação , Avaliação Pré-Clínica de Medicamentos/métodos , Vaccinia virus/efeitos dos fármacos , Proteínas Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/farmacologia , Linhagem Celular , Vírus da Varíola Bovina/efeitos dos fármacos , Humanos , Ligação Proteica/efeitos dos fármacos , Técnicas do Sistema de Duplo-Híbrido , Leveduras/genética
17.
Antiviral Res ; 89(1): 89-97, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21095206

RESUMO

Vaccinia virus (VACV) was used as a surrogate of Variola virus (genus Orthopoxvirus), the causative agent of smallpox, to study orthopoxvirus infection via the respiratory airway. Lung surfactant, a physiological barrier to infection encountered by the virus, is predominantly composed of phospholipids whose role during orthopoxvirus infection has not been investigated. An attenuated Lister strain, derived from the traditional smallpox vaccine and the Western Reserve (WR) strain, lethal for mice infected by the respiratory route, were examined for their ability to bind various surfactant phospholipids. Dipalmitoyl phosphatidylglycerol (DPPG) was found to interact with both VACV strains. DPPG incorporated in small unilamellar vesicle (SUV-DPPG) inhibited VACV cell infection, unlike other phospholipids tested. Both pre-incubation of virus with SUV-DPPG and pretreatment of the cell with SUV-DPPG inhibited cell infection. This specific DPPG effect was shown to be concentration and time dependent and to prevent the first step of the viral cycle, i.e. virus cell attachment. Cryo-electron microscopy highlighted the interaction between the virus and SUV-DPPG. In the presence of the phospholipid, virus particles displayed a hedgehog-like appearance due to the attachment of lipid vesicles. Mice infected intranasally with VACV-WR pre-incubated with SUV-DPPG survived a lethal infection. These data suggest that DPPG in lung surfactant could reduce the amount of orthopoxvirus particles able to infect pneumocytes at the beginning of a respiratory poxvirus infection. The knowledge acquired during this study of virus-DPPG interactions may be used to develop novel chemotherapeutic strategies for smallpox.


Assuntos
Antivirais/farmacologia , Fosfatidilgliceróis/farmacologia , Surfactantes Pulmonares/farmacologia , Vaccinia virus/patogenicidade , Vacínia/prevenção & controle , Animais , Linhagem Celular , Microscopia Crioeletrônica , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Ligação Viral/efeitos dos fármacos , Inativação de Vírus
18.
Case Rep Dermatol ; 3(3): 186-94, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22110431

RESUMO

The case presented here points towards the fact that skin lesion observed with a cowpox virus is a rare event but should be considered more as the number of cases has increased in the last years. Cowpox virus (CPXV) belongs to the Poxviridae family. The transmission of CPXV to humans is caused by wild rodents or mostly by domestic animals and pet rats. In humans, CPXV is responsible for localized skin lesions regularly accompanied by lymphadenopathy. The lesions remain localized but self-inoculation from the primary lesions could occur. Then physicians have to be vigilant concerning bandages. In this case report, a necrotic and ulcerated lesion of a CPXV infection in a young boy is reported. The CPXV was possibly transmitted by wild rodents. The importance of performing the diagnosis is also pointed out. Virus information was obtained from phylogenetic analyses showing that the CPXV isolate was distinct from outbreaks of human cowpox which occurred in 2009 in France and Germany but was close to the CPXV Brighton Red strain. For several years, cases of viral zoonosis caused by CPXV have increased and physicians should be made aware that people could be infected without history of direct contact with animals.

19.
J Infect ; 63(5): 391-3, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21723880
20.
J Clin Invest ; 120(5): 1636-44, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20364089

RESUMO

Vaccinia virus (VV) vaccination is used to immunize against smallpox and historically was considered to have been successful if a skin lesion formed at the vaccination site. While antibody responses have been widely proposed as a correlate of efficacy and protection in humans, the role of cellular and humoral immunity in VV-associated skin lesion formation was unknown. We therefore investigated whether long-term residual humoral and cellular immune memory to VV, persisting 30 years after vaccination, could control VV-induced skin lesion in revaccinated individuals. Here, we have shown that residual VV-specific IFN-gamma+TNF-alpha+ or IFN-gamma+IL-2+ CD4+ lymphocytes but not CD8+ effector/memory lymphocytes expressing a skin-homing marker are inversely associated with the size of the skin lesion formed in response to revaccination. Indeed, high numbers of residual effector T cells were associated with lower VV skin lesion size after revaccination. In contrast, long-term residual VV-specific neutralizing antibody (NAbs) titers did not affect skin lesion formation. However, the size of the skin lesion strongly correlated with high levels of NAbs boosted after revaccination. These findings demonstrate a potential role for VV-specific CD4+ responses at the site of VV-associated skin lesion, thereby providing new insight into immune responses at these sites and potentially contributing to the development of new approaches to measure the efficacy of VV vaccination.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Interferon gama/metabolismo , Dermatopatias/virologia , Pele/metabolismo , Pele/virologia , Fator de Necrose Tumoral alfa/metabolismo , Vaccinia virus/metabolismo , Adulto , Complexo CD3/biossíntese , Proliferação de Células , Feminino , Humanos , Interleucina-2/metabolismo , Cinética , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Dermatopatias/sangue , Varíola/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA