Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Acoust Soc Am ; 155(1): 629-639, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38259126

RESUMO

In non-destructive evaluation guided wave inspections, the elastic structure to be inspected is often embedded within other elastic media and the ensuing leaky waves are complex and non-trivial to compute; we consider the canonical example of an elastic waveguide surrounded by other elastic materials that demonstrates the fundamental issues with calculating the leaky waves in such systems. Due to the complex wavenumber solutions required to represent them, leaky waves pose significant challenges to existing numerical methods, with methods that spatially discretise the field to retrieve them suffering from the exponential growth of their amplitude far into the surrounding media. We present a spectral collocation method yielding an accurate and efficient identification of these modes, leaking into elastic half-spaces. We discretise the elastic domains and, depending on the exterior bulk wavespeeds, select appropriate mappings of the discretised domain to complex paths, in which the numerical solution decays and the physics of the problem are preserved. By iterating through all possible radiation cases, the full set of dispersion and attenuation curves are successfully retrieved and validated, where possible, against the commercially available software disperse. As an independent validation, dispersion curves are obtained from finite element simulations of time-dependent waves using Fourier analysis.

2.
Philos Trans A Math Phys Eng Sci ; 380(2237): 20220005, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36209814

RESUMO

Taking as bioinspiration the remarkable acoustic absorption properties of moth wings, we develop a simple analytical model that describes the interaction between acoustic pressure fields, and thin elastic plates incorporating resonant sub-structures. The moth wing is an exemplar of a natural acoustic metamaterial; the wings are deeply subwavelength in thickness at the frequencies of interest, the absorption is broadband and the tiny scales resonate on the moth wing acting in concert. The simplified model incorporates only the essential physics and the scales are idealized to flat rigid rectangular plates coupled via a spring to an elastic plate that forms the wing; all the components are deep-subwavelength at desired frequencies. Based on Fourier analysis, complemented by phenomenological modelling, our theory shows excellent agreement with simulation mimicking the moth-wing structure. Moth wings operate as broadband sound absorbers employing a range of scale sizes. We demonstrate that a random distribution of scale sizes generates a broadband absorption spectrum. To further illustrate the potential of the model, we design a deeply sub-wavelength acoustic counterpart of electromagnetically induced reflectance. This article is part of the theme issue 'Wave generation and transmission in multi-scale complex media and structured metamaterials (part 2)'.


Assuntos
Mariposas , Acústica , Animais , Simulação por Computador
3.
Proc Natl Acad Sci U S A ; 116(50): 24943-24948, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31767741

RESUMO

A moving medium drags light along with it as measured by Fizeau and explained by Einstein's theory of special relativity. Here we show that the same effect can be obtained in a situation where there is no physical motion of the medium. Modulations of both the permittivity and permeability, phased in space and time in the form of traveling waves, are the basis of our model. Space-time metamaterials are represented by effective bianisotropic parameters, which can in turn be mapped to a moving homogeneous medium. Hence these metamaterials mimic a relativistic effect without the need for any actual material motion. We discuss how both the permittivity and permeability need to be modulated to achieve these effects, and we present an equivalent transmission line model.

4.
J Acoust Soc Am ; 152(3): 1487, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36182278

RESUMO

Leaky waves are an important class of waves, particularly for guiding waves along structures embedded within another medium; a mismatch in wavespeeds often leads to leakage of energy from the waveguide, or interface, into the medium, which consequently attenuates the guided wave. The accurate and efficient identification of theoretical solutions for leaky waves is a key requirement for the choices of modes and frequencies required for non-destructive evaluation inspection techniques. We choose a typical situation to study: an elastic waveguide with a fluid on either side. Historically, leaky waves are identified via root-finding methods that have issues with conditioning, or numerical methods that struggle with the exponential growth of solutions at infinity. By building upon a spectral collocation method, we show how it can be adjusted to find exponentially growing solutions, i.e., leaky waves, leading to an accurate, fast, and efficient identification of their dispersion properties. The key concept required is a mapping, in the fluid region, that allows for exponential growth of the physical solution at infinity, whilst the mapped numerical setting decays. We illustrate this by studying leaky Lamb waves in an elastic waveguide immersed between two different fluids and verify this using the commercially available software disperse.

5.
Phys Rev Lett ; 121(25): 253902, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30608776

RESUMO

The optical properties of small metallic particles allow us to bridge the gap between the myriad of subdiffraction local phenomena and macroscopic optical elements. The optomechanical coupling between mechanical vibrations of Au nanoparticles and their optical response due to collective electronic oscillations leads to the emission and the detection of surface acoustic waves (SAWs) by single metallic nanoantennas. We take two Au nanoparticles, one acting as a source and the other as a receptor of SAWs and, even though these antennas are separated by distances orders of magnitude larger than the characteristic subnanometric displacements of vibrations, we probe the frequency content, wave speed, and amplitude decay of SAWs originating from the damping of coherent mechanical modes of the source. Two-color pump-probe experiments and numerical methods reveal the characteristic Rayleigh wave behavior of emitted SAWs, and show that the SAW-induced optical modulation of the receptor antenna allows us to accurately probe the frequency of the source, even when the eigenmodes of source and receptor are detuned.

6.
Langmuir ; 34(42): 12501-12518, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29727189

RESUMO

Despite decades of research, the modeling of moving contact lines has remained a formidable challenge in fluid dynamics whose resolution will impact numerous industrial, biological, and daily life applications. On the one hand, molecular dynamics (MD) simulation has the ability to provide unique insight into the microscopic details that determine the dynamic behavior of the contact line, which is not possible with either continuum-scale simulations or experiments. On the other hand, continuum-based models provide a link to the macroscopic description of the system. In this Feature Article, we explore the complex range of physical factors, including the presence of surfactants, which governs the contact line motion through MD simulations. We also discuss links between continuum- and molecular-scale modeling and highlight the opportunities for future developments in this area.

7.
Phys Biol ; 14(4): 041001, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28586313

RESUMO

The number of individuals suffering from diseases of the central nervous system (CNS) is growing with an aging population. While candidate drugs for many of these diseases are available, most of these pharmaceutical agents cannot reach the brain rendering most of the drug therapies that target the CNS inefficient. The reason is the blood-brain barrier (BBB), a complex and dynamic interface that controls the influx and efflux of substances through a number of different translocation mechanisms. Here, we present these mechanisms providing, also, the necessary background related to the morphology and various characteristics of the BBB. Moreover, we discuss various numerical and simulation approaches used to study the BBB, and possible future directions based on multi-scale methods. We anticipate that this review will motivate multi-disciplinary research on the BBB aiming at the design of effective drug therapies.


Assuntos
Transporte Biológico , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Farmacocinética , Animais , Barreira Hematoencefálica/anatomia & histologia , Sistema Nervoso Central/metabolismo , Simulação por Computador , Desenho de Fármacos , Humanos
8.
Langmuir ; 31(8): 2304-9, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25658859

RESUMO

The intriguing ability of certain surfactant molecules to drive the superspreading of liquids to complete wetting on hydrophobic substrates is central to numerous applications that range from coating flow technology to enhanced oil recovery. Despite significant experimental efforts, the precise mechanisms underlying superspreading remain unknown to date. Here, we isolate these mechanisms by analyzing coarse-grained molecular dynamics simulations of surfactant molecules of varying molecular architecture and substrate affinity. We observe that for superspreading to occur, two key conditions must be simultaneously satisfied: the adsorption of surfactants from the liquid-vapor surface onto the three-phase contact line augmented by local bilayer formation. Crucially, this must be coordinated with the rapid replenishment of liquid-vapor and solid-liquid interfaces with surfactants from the interior of the droplet. This article also highlights and explores the differences between superspreading and conventional surfactants, paving the way for the design of molecular architectures tailored specifically for applications that rely on the control of wetting.

9.
Soft Matter ; 11(48): 9254-61, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26537741

RESUMO

The surfactant-driven superspreading of droplets on hydrophobic substrates is considered. A key element of the superspreading mechanism is the adsorption of surfactant molecules from the liquid-vapour interface onto the substrate through the contact line, which must be coordinated with the replenishment of interfaces with surfactant from the interior of the droplet. We use molecular dynamics simulations with coarse-grained force fields to provide a detailed structural description of the droplet shape and surfactant dynamics during the superspreading process. We also provide a simple method for accurate estimation of the contact angle subtended by the droplets at the contact line.


Assuntos
Simulação por Computador , Modelos Químicos , Tensoativos/química , Interações Hidrofóbicas e Hidrofílicas
10.
Langmuir ; 30(20): 5849-58, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24819778

RESUMO

The dynamics of a slender, evaporating, particle-laden droplet under the effect of electric fields are examined. Lubrication theory is used to reduce the governing equations to a coupled system of evolution equations for the interfacial position and the local, depth-averaged particle concentration. The model incorporates the effects of capillarity, viscous stress, Marangoni stress, elecrostatically induced Maxwell stress, van der Waals forces, concentration-dependent rheology, and evaporation. Via a parametric numerical study, the one-dimensional model is shown to recover the expected inhomogeneous ring-like structures in appropriate parameter ranges due to a combination of enhanced evaporation close to the contact line, and resultant capillarity-induced flow. It is then demonstrated that this effect can be significantly suppressed via the use of carefully chosen electric fields. Finally, the three-dimensional behavior of the film and the particle concentration field is briefly examined.

11.
Soft Matter ; 10(32): 6024-37, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-24998938

RESUMO

The equilibrium profile of a capillary meniscus formed under combined action of disjoining/conjoining and capillarity pressures is investigated. Attention is focused on the shape of a transition zone between a spherical meniscus and a thin liquid film in front of the meniscus. The Poisson-Boltzmann equation is used for calculations of electrostatic contribution to the disjoining/conjoining pressure and the liquid shape inside the transition zone. Both complete and partial wetting conditions are investigated.

12.
Sci Rep ; 13(1): 21836, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071247

RESUMO

The energy harvesting capability of a graded metamaterial is maximised via reinforcement learning (RL) under realistic excitations at the microscale. The metamaterial consists of a waveguide with a set of beam-like resonators of variable length, with piezoelectric patches, attached to it. The piezo-mechanical system is modelled through equivalent lumped parameters determined via a general impedance analysis. Realistic conditions are mimicked by considering either magnetic loading or random excitations, the latter scenario requiring the enhancement of the harvesting capability for a class of forcing terms with similar but different frequency content. The RL-based optimisation is empowered by using the physical understanding of wave propagation in a such local resonance system to constrain the state representation and the action space. The procedure outcomes are compared against grading rules optimised through genetic algorithms. While genetic algorithms are more effective in the deterministic setting featuring the application of magnetic loading, the proposed RL-based proves superior in the inherently stochastic setting of the random excitation scenario.

13.
Phys Rev E ; 105(5-1): 054602, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35706225

RESUMO

We develop a theory for drying-induced stresses in sessile, poroelastic drops undergoing evaporation on rigid surfaces. Using a lubrication-like approximation, the governing equations of three-dimensional nonlinear poroelasticity are reduced to a single thin-film equation for the drop thickness. We find that thin drops experience compressive elastic stresses but the total in-plane stresses are tensile. The mechanical response of the drop is dictated by the initial profile of the solid skeleton, which controls the in-plane deformation, the dominant components of elastic stress, and sets a limit on the depth of delamination that can potentially occur. Our theory suggests that the alignment of desiccation fractures in colloidal drops is selected by the shape of the drop at the point of gelation. We propose that the emergence of three distinct fracture patterns in dried blood drops is a consequence of a nonmonotonic drop profile at gelation. We also show that depletion fronts, which separate wet and dry solid, can invade the drop from the contact line and localize the generation of mechanical stress during drying. Finally, the finite element method is used to explore the stress profiles in drops with large contact angles.

14.
Sci Rep ; 12(1): 1088, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058498

RESUMO

Motivated by the importance of lattice structures in multiple fields, we numerically investigate the propagation of flexural waves in a thin reticulated plate augmented with two classes of metastructures for wave mitigation and guiding, namely metabarriers and metalenses. The cellular architecture of this plate invokes the well-known octet topology, while the metadevices rely on novel customized octets either comprising spherical masses added to the midpoint of their struts or variable node thickness. We numerically determine the dispersion curves of a doubly-periodic array of octets, which produce a broad bandgap whose underlying physics is elucidated and leveraged as a design paradigm, allowing the construction of a metabarrier effective for inhibiting the transmission of waves. More sophisticated effects emerge upon parametric analyses of the added masses and node thickness, leading to graded designs that spatially filter waves through an enlarged bandgap via rainbow trapping. Additionally, Luneburg and Maxwell metalenses are realized using the spatial modulation of the tuning parameters and numerically tested. Wavefronts impinging on these structures are progressively curved within the inhomogeneous media and steered toward a focal point. Our results yield new perspectives for the use of octet-like lattices, paving the way for promising applications in vibration isolation and energy focusing.

15.
J Opt Soc Am A Opt Image Sci Vis ; 28(6): 1032-40, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21643388

RESUMO

The counterintuitive properties of photonic crystals, such as all-angle negative refraction (AANR) [J. Mod. Opt.34, 1589 (1987)] and high-directivity via ultrarefraction [Phys. Rev. Lett.89, 213902 (2002)], as well as localized defect modes, are known to be associated with anomalous dispersion near the edge of stop bands. We explore the implications of an asymptotic approach to uncover the underlying structure behind these phenomena. Conventional homogenization is widely assumed to be ineffective for modeling photonic crystals as it is limited to low frequencies when the wavelength is long relative to the microstructural length scales. Here a recently developed high-frequency homogenization (HFH) theory [Proc. R. Soc. Lond. A466, 2341 (2010)] is used to generate effective partial differential equations on a macroscale, which have the microscale embedded within them through averaged quantities, for checkerboard media. For physical applications, ultrarefraction is well described by an equivalent homogeneous medium with an effective refractive index given by the HFH procedure, the decay behavior of localized defect modes is characterized completely, and frequencies at which AANR occurs are all determined analytically. We illustrate our findings numerically with a finite-size checkerboard using finite elements, and we emphasize that conventional effective medium theory cannot handle such high frequencies. Finally, we look at light confinement effects in finite-size checkerboards behaving as open resonators when the condition for AANR is met [J. Phys. Condens. Matter 15, 6345 (2003)].

16.
Nat Commun ; 11(1): 3267, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32601307

RESUMO

Elastic waves guided along surfaces dominate applications in geophysics, ultrasonic inspection, mechanical vibration, and surface acoustic wave devices; precise manipulation of surface Rayleigh waves and their coupling with polarised body waves presents a challenge that offers to unlock the flexibility in wave transport required for efficient energy harvesting and vibration mitigation devices. We design elastic metasurfaces, consisting of a graded array of rod resonators attached to an elastic substrate that, together with critical insight from Umklapp scattering in phonon-electron systems, allow us to leverage the transfer of crystal momentum; we mode-convert Rayleigh surface waves into bulk waves that form tunable beams. Experiments, theory and simulation verify that these tailored Umklapp mechanisms play a key role in coupling surface Rayleigh waves to reversed bulk shear and compressional waves independently, thereby creating passive self-phased arrays allowing for tunable redirection and wave focusing within the bulk medium.

17.
Nat Commun ; 10(1): 2118, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31073197

RESUMO

The design of achromatic optical components requires materials with high transparency and low dispersion. We show that although metals are highly opaque, densely packed arrays of metallic nanoparticles can be more transparent to infrared radiation than dielectrics such as germanium, even when the arrays are over 75% metal by volume. Such arrays form effective dielectrics that are virtually dispersion-free over ultra-broadband ranges of wavelengths from microns up to millimeters or more. Furthermore, the local refractive indices may be tuned by altering the size, shape, and spacing of the nanoparticles, allowing the design of gradient-index lenses that guide and focus light on the microscale. The electric field is also strongly concentrated in the gaps between the metallic nanoparticles, and the simultaneous focusing and squeezing of the electric field produces strong 'doubly-enhanced' hotspots which could boost measurements made using infrared spectroscopy and other non-linear processes over a broad range of frequencies.

18.
Microfluid Nanofluidics ; 22(11): 126, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30930706

RESUMO

The three-dimensional two-phase flow dynamics inside a microfluidic device of complex geometry is simulated using a parallel, hybrid front-tracking/level-set solver. The numerical framework employed circumvents numerous meshing issues normally associated with constructing complex geometries within typical computational fluid dynamics packages. The device considered in the present work is constructed via a module that defines solid objects by means of a static distance function. The construction combines primitive objects, such as a cylinder, a plane, and a torus, for instance, using simple geometrical operations. The numerical solutions predicted encompass dripping and jetting, and transitions in flow patterns are observed featuring the formation of drops, 'pancakes', plugs, and jets, over a wide range of flow rate ratios. We demonstrate the fact that vortex formation accompanies the development of certain flow patterns, and elucidate its role in their underlying mechanisms. Experimental visualisation with a high-speed imaging are also carried out. The numerical predictions are in excellent agreement with the experimental data.

20.
Sci Rep ; 7(1): 6750, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28754967

RESUMO

Recent years have heralded the introduction of metasurfaces that advantageously combine the vision of sub-wavelength wave manipulation, with the design, fabrication and size advantages associated with surface excitation. An important topic within metasurfaces is the tailored rainbow trapping and selective spatial frequency separation of electromagnetic and acoustic waves using graded metasurfaces. This frequency dependent trapping and spatial frequency segregation has implications for energy concentrators and associated energy harvesting, sensing and wave filtering techniques. Different demonstrations of acoustic and electromagnetic rainbow devices have been performed, however not for deep elastic substrates that support both shear and compressional waves, together with surface Rayleigh waves; these allow not only for Rayleigh wave rainbow effects to exist but also for mode conversion from surface into shear waves. Here we demonstrate experimentally not only elastic Rayleigh wave rainbow trapping, by taking advantage of a stop-band for surface waves, but also selective mode conversion of surface Rayleigh waves to shear waves. These experiments performed at ultrasonic frequencies, in the range of 400-600 kHz, are complemented by time domain numerical simulations. The metasurfaces we design are not limited to guided ultrasonic waves and are a general phenomenon in elastic waves that can be translated across scales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA