Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
PLoS Pathog ; 19(3): e1011262, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36947551

RESUMO

Microorganisms living in and on macroorganisms may produce microbial volatile compounds (mVOCs) that characterise organismal odours. The mVOCs might thereby provide a reliable cue to carnivorous enemies in locating their host or prey. Parasitism by parasitoid wasps might alter the microbiome of their caterpillar host, affecting organismal odours and interactions with insects of higher trophic levels such as hyperparasitoids. Hyperparasitoids parasitise larvae or pupae of parasitoids, which are often concealed or inconspicuous. Odours of parasitised caterpillars aid them to locate their host, but the origin of these odours and its relationship to the caterpillar microbiome are unknown. Here, we analysed the odours and microbiome of the large cabbage white caterpillar Pieris brassicae in relation to parasitism by its endoparasitoid Cotesia glomerata. We identified how bacterial presence in and on the caterpillars is correlated with caterpillar odours and tested the attractiveness of parasitised and unparasitised caterpillars to the hyperparasitoid Baryscapus galactopus. We manipulated the presence of the external microbiome and the transient internal microbiome of caterpillars to identify the microbial origin of odours. We found that parasitism by C. glomerata led to the production of five characteristic volatile products and significantly affected the internal and external microbiome of the caterpillar, which were both found to have a significant correlation with caterpillar odours. The preference of the hyperparasitoid was correlated with the presence of the external microbiome. Likely, the changes in external microbiome and body odour after parasitism were driven by the resident internal microbiome of caterpillars, where the bacterium Wolbachia sp. was only present after parasitism. Micro-injection of Wolbachia in unparasitised caterpillars increased hyperparasitoid attraction to the caterpillars compared to untreated caterpillars, while no differences were found compared to parasitised caterpillars. In conclusion, our results indicate that host-parasite interactions can affect multi-trophic interactions and hyperparasitoid olfaction through alterations of the microbiome.


Assuntos
Borboletas , Vespas , Animais , Odorantes , Larva , Borboletas/parasitologia , Vespas/parasitologia , Interações Hospedeiro-Parasita
2.
Int Microbiol ; 27(2): 525-534, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37507629

RESUMO

Although coffee leaf rust (CLR), caused by Hemileia vastatrix, poses an increasing threat to coffee production in Ethiopia, little is known regarding its genetic diversity and structure and how these are affected by coffee management. Here, we used genetic fingerprinting based on sequence-related amplified polymorphism (SRAP) markers to genotype H. vastatrix samples from different coffee shrubs, across 40 sites, covering four coffee production systems (forest coffee, semi plantation coffee, home garden coffee, and plantation coffee) and different altitudes in Ethiopia. In total, 96 H. vastatrix samples were successfully genotyped with three primer combinations, producing a total of 79 scorable bands. We found 35.44% of amplified bands to be polymorphic, and the polymorphic information content (PIC) was 0.45, suggesting high genetic diversity among our CLR isolates. We also found significant isolation-by-distance across the samples investigated and detected significant differences in fungal genetic composition among plantation coffee and home garden coffee and a marginally significant difference among plantation coffee and forest coffee. Furthermore, we found a significant effect of altitude on CLR genetic composition in the forest coffee and plantation systems. Our results suggest that both spore dispersal and different selection pressures in the different coffee management systems are likely responsible for the observed high genetic diversity and genetic structure of CLR isolates in Ethiopia. When selecting Ethiopian coffee genotypes for crop improvement, it is important that these genotypes carry some resistance against CLR. Because our study shows large variation in genetic composition across relatively short geographical distances, a broad selection of rust isolates must be used for coffee resistance screening.


Assuntos
Basidiomycota , Coffea , Coffea/genética , Coffea/microbiologia , Etiópia , Basidiomycota/genética , Polimorfismo Genético , Doenças das Plantas/microbiologia
3.
J Appl Microbiol ; 132(1): 126-139, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34133817

RESUMO

AIMS: This study evaluated pH reduction and microbial growth during fermentation of maize stover (MS) mixed with banana pseudostem (BPS) under South Ethiopian conditions. MATERIALS AND RESULTS: The MS and BPS were chopped and mixed into six treatments (T): 80% BPS plus 20% DMS (T1), 70% BPS plus 30% DMS (T2), 40% BPS plus 60% FMS (fresh MS) (T3), 20% BPS plus 80% FMS (T4), 100% FMS (T5), and 95% BPS plus 5% molasses (T6). At 0, 7, 14, 30, 60, and 90 days, pH and dry matter were determined. Microbiological quality was assessed using plate counts and Illumina MiSeq sequencing. On day 60 and 90, aerobic stability was investigated. The results showed a significant reduction in pH in all mixtures, except in T1 and T2. Lactic acid bacteria counts reached a maximum in all treatments within 14 days. Sequencing showed marked changes in dominant bacteria, such as Buttiauxella and Acinetobacter to Lactobacillus and Bifidobacterium. CONCLUSIONS: The fresh MS and BPS mixtures and fresh maize showed significant pH reduction and dominance of desirable microbial groups. SIGNIFICANCE AND IMPACT OF THE STUDY: The study enables year-round livestock feed supplementation to boost milk and meat production in South Ethiopia.


Assuntos
Musa , Zea mays , Aerobiose , Etiópia , Fermentação , Silagem/análise
4.
Food Microbiol ; 77: 106-117, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30297041

RESUMO

This research aimed at establishing the chemical intrinsic properties and the microbial quality of an edible grasshopper Ruspolia differens and the effect of its source (geographical area) in Uganda, trading point, swarming season and plucking on these parameters. The intrinsic properties of the grasshopper can support the growth of a wide variety of microorganisms. High counts of total aerobic microbes, Enterobacteriaceae, lactic acid bacteria, total aerobic spores, and yeasts and moulds were obtained. Metagenetic analyses yielded 1793 Operational Taxonomic Units (OTUs) belonging to 24 phyla. Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria and Proteobacteria were the most abundant phyla, while members of the genera Acinetobacter, Buttiauxella, Lactococcus, Staphylococcus and Undibacterium were the most abundant OTUs. A number of genera harbouring potential pathogens (Acinetobacter, Bacillus, Buttiauxella, Campylobacter, Clostridium, Staphylococcus, Pseudomonas and Neisseria) were identified. The geographical area, trading point, swarming season and plucking significantly influenced microbial counts and bacterial diversity. The high microbial counts predispose R. differens to fast microbial spoilage, while the presence of Clostridium and Campylobacter makes this grasshopper a potential source of food borne diseases. Further research should identify the specific spoilage microorganisms of R. differens and assess the characteristics of this grasshopper that support growth of food pathogens.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Gafanhotos/microbiologia , Microbiota , Animais , Bactérias/genética , Carga Bacteriana , Biodiversidade , DNA Bacteriano/análise , Inocuidade dos Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Concentração de Íons de Hidrogênio , Filogenia , RNA Ribossômico 16S/genética , Estações do Ano , Uganda , Leveduras
5.
Appl Environ Microbiol ; 84(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29625988

RESUMO

In this study, the microbiota during industrial rearing, processing, and storage of the edible tropical house cricket, Gryllodessigillatus, was investigated. To this end, we analyzed samples from the cricket feed, obtained before feeding as well as from the cages, and from the crickets during rearing, after harvest, and after processing into frozen, oven-dried, and smoked and oven-dried (smoked/dried) end products. Although the feed contained lower microbial numbers than the crickets, both were dominated by the same species-level operational taxonomic units, as determined by Illumina MiSeq sequencing. They corresponded, among others, to members of Porphyromonadaceae, Fusobacterium, Parabacteroides, and Erwinia The harvested crickets contained high microbial numbers, but none of the investigated food pathogens Salmonella spp., Listeria monocytogenes, Bacillus cereus, or coagulase-positive staphylococci. However, some possible mycotoxin-producing fungi were isolated from the crickets. A postharvest heat treatment, shortly boiling the crickets, reduced microbial numbers, but an endospore load of 2.4 log CFU/g remained. After processing, an increase in microbial counts was observed for the dried and smoked/dried crickets. Additionally, in the smoked/dried crickets, a high abundance of a Bacillus sp. was observed. Considering the possible occurrence of food-pathogenic species from this genus, it is advised to apply a heat treatment which is sufficient to eliminate spores. Nevertheless, the microbial numbers remained constant over a 6-month storage period, whether frozen (frozen end product) or at ambient temperature (oven-dried and smoked/dried end products).IMPORTANCE The need for sustainable protein sources has led to the emergence of a new food sector, producing and processing edible insects into foods. However, insight into the microbial quality of this new food and into the microbial dynamics during rearing, processing, and storage of edible insects is still limited. Samples monitored for their microbiota were obtained in this study from an industrial rearing and processing cycle. The results lead first to the identification of process steps which are critical for microbial food safety. Second, they can be used in the construction of a Hazard Analysis and Critical Control Points (HACCP) plan and of a Novel Food dossier, which is required in Europe for edible insects. Finally, they confirm the shelf-life period which was determined by the rearer.


Assuntos
Bactérias/isolamento & purificação , Microbiologia de Alimentos , Armazenamento de Alimentos , Gryllidae/microbiologia , Animais , Bactérias/genética , Contagem de Colônia Microbiana , Europa (Continente) , Manipulação de Alimentos , Sequenciamento de Nucleotídeos em Larga Escala , Esporos Bacterianos , Clima Tropical
6.
FEMS Yeast Res ; 17(1)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27956491

RESUMO

Brettanomyces (Dekkera) bruxellensis is an ascomycetous yeast of major importance in the food, beverage and biofuel industry. It has been isolated from various man-made ecological niches that are typically characterized by harsh environmental conditions such as wine, beer, soft drink, etc. Recent comparative genomics studies revealed an immense intraspecific diversity, but it is still unclear whether this genetic diversity also leads to systematic differences in fermentation performance and (off-)flavor production, and to what extent strains have evolved to match their ecological niche. Here, we present an evaluation of the fermentation properties of eight genetically diverse B. bruxellensis strains originating from beer, wine and soft drinks. We show that sugar consumption and aroma production during fermentation are determined by both the yeast strain and composition of the medium. Furthermore, our results indicate a strong niche adaptation of B. bruxellensis, most clearly for wine strains. For example, only strains originally isolated from wine were able to thrive well and produce the typical Brettanomyces-related phenolic off-flavors 4-ethylguaiacol and 4-ethylphenol when inoculated in red wine. Sulfite tolerance was found as a key factor explaining the observed differences in fermentation performance and off-flavor production. Sequence analysis of genes related to phenolic off-flavor production, however, revealed only marginal differences between the isolates tested, especially at the amino acid level. Altogether, our study provides novel insights in the Brettanomyces metabolism of flavor production, and is highly relevant for both the wine and beer industry.


Assuntos
Brettanomyces/metabolismo , Metabolismo dos Carboidratos , Fermentação , Microbiologia de Alimentos , Compostos Orgânicos Voláteis/metabolismo , Adaptação Biológica , Brettanomyces/classificação , Brettanomyces/genética , Brettanomyces/isolamento & purificação , Meios de Cultura/química , Variação Genética
7.
Appl Microbiol Biotechnol ; 100(12): 5339-52, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26816092

RESUMO

Comparative analyses of bacterial and archaeal community structures and dynamics in three biogas digesters during start-up and subsequent operation using microwaved, ultrasonicated or untreated waste activated sludge were performed based on 454 pyrosequencing datasets of part of 16S ribosomal RNA sequences and quantitative PCR. The pre-treatment increased the solubility, and thus the availability of the substrate for microbial degradation and significantly affected the succession of the anaerobic community structure over the course of the digestion. Bacteroidetes, Proteobacteria and Firmicutes were the dominant phyla in all digesters throughout operation. Proteobacteria decreased in relative abundance from 23-26 % to 11-13 % in association with enhanced substrate availability. Negative correlations between relative abundance of Alpha-, Beta- and Gammaproteobacteria and the substrate availability and/or biogas production were disclosed in statistical analyses. Clostridiales was the dominant order in Firmicutes, and Clostridiales, Clostridia and Firmicutes relative abundance and richness were shown to positively correlate with substrate availability and biogas generation. Methanogenic communities had a fairly restricted structure, highly dominated by Methanosaeta and Methanobrevibacter phylotypes. A gradual decline in Methanobrevibacter and increased representation of Methanosaeta concilii over time were particularly apparent in the digester receiving untreated waste activated sludge, whereas more diversified archaeal communities were maintained in the pre-treatment digesters. The quantitative PCR analyses revealed a methanogenic community distribution that coincided with the 454 pyrosequencing data.


Assuntos
Metano/biossíntese , Consórcios Microbianos/fisiologia , Micro-Ondas , Esgotos/microbiologia , Ondas Ultrassônicas , Anaerobiose/fisiologia , Anaerobiose/efeitos da radiação , Archaea/genética , Archaea/fisiologia , Archaea/efeitos da radiação , Bacteroidetes/genética , Bacteroidetes/fisiologia , Bacteroidetes/efeitos da radiação , Biocombustíveis , Reatores Biológicos/microbiologia , Euryarchaeota/genética , Euryarchaeota/fisiologia , Euryarchaeota/efeitos da radiação , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Consórcios Microbianos/genética , Consórcios Microbianos/efeitos da radiação , Proteobactérias/genética , Proteobactérias/fisiologia , Proteobactérias/efeitos da radiação , RNA Ribossômico 16S , Reação em Cadeia da Polimerase em Tempo Real , Esgotos/química
8.
Appl Environ Microbiol ; 80(14): 4398-413, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24814796

RESUMO

Brettanomyces yeasts, with the species Brettanomyces (Dekkera) bruxellensis being the most important one, are generally reported to be spoilage yeasts in the beer and wine industry due to the production of phenolic off flavors. However, B. bruxellensis is also known to be a beneficial contributor in certain fermentation processes, such as the production of certain specialty beers. Nevertheless, despite its economic importance, Brettanomyces yeasts remain poorly understood at the genetic and genomic levels. In this study, the genetic relationship between more than 50 Brettanomyces strains from all presently known species and from several sources was studied using a combination of DNA fingerprinting techniques. This revealed an intriguing correlation between the B. bruxellensis fingerprints and the respective isolation source. To further explore this relationship, we sequenced a (beneficial) beer isolate of B. bruxellensis (VIB X9085; ST05.12/22) and compared its genome sequence with the genome sequences of two wine spoilage strains (AWRI 1499 and CBS 2499). ST05.12/22 was found to be substantially different from both wine strains, especially at the level of single nucleotide polymorphisms (SNPs). In addition, there were major differences in the genome structures between the strains investigated, including the presence of large duplications and deletions. Gene content analysis revealed the presence of 20 genes which were present in both wine strains but absent in the beer strain, including many genes involved in carbon and nitrogen metabolism, and vice versa, no genes that were missing in both AWRI 1499 and CBS 2499 were found in ST05.12/22. Together, this study provides tools to discriminate Brettanomyces strains and provides a first glimpse at the genetic diversity and genome plasticity of B. bruxellensis.


Assuntos
Brettanomyces/classificação , Impressões Digitais de DNA , Genoma Fúngico , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Alelos , Cerveja , Brettanomyces/genética , Brettanomyces/isolamento & purificação , DNA Fúngico/genética , Fermentação , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Deleção de Genes , Filogenia
9.
FEMS Microbiol Ecol ; 100(3)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38317643

RESUMO

Understanding the complex interactions between plants and their associated microorganisms is crucial for optimizing plant health and productivity. While microbiomes of soil-bound cultivated crops are extensively studied, microbiomes of hydroponically cultivated crops have received limited attention. To address this knowledge gap, we investigated the rhizosphere and root endosphere of hydroponically cultivated lettuce. Additionally, we sought to explore the potential impact of the oomycete pathogen Phytophthora cryptogea on these microbiomes. Root samples were collected from symptomatic and nonsymptomatic plants in three different greenhouses. Amplicon sequencing of the bacterial 16S rRNA gene revealed significant alterations in the bacterial community upon P. cryptogea infection, particularly in the rhizosphere. Permutational multivariate analysis of variance (perMANOVA) revealed significant differences in microbial communities between plants from the three greenhouses, and between symptomatic and nonsymptomatic plants. Further analysis uncovered differentially abundant zero-radius operational taxonomic units (zOTUs) between symptomatic and nonsymptomatic plants. Interestingly, members of Pseudomonas and Flavobacterium were positively associated with symptomatic plants. Overall, this study provides valuable insights into the microbiome of hydroponically cultivated plants and highlights the influence of pathogen invasion on plant-associated microbial communities. Further research is required to elucidate the potential role of Pseudomonas and Flavobacterium spp. in controlling P. cryptogea infections within hydroponically cultivated lettuce greenhouses.


Assuntos
Microbiota , Phytophthora , Lactuca , Phytophthora/genética , RNA Ribossômico 16S/genética , Raízes de Plantas/microbiologia , Microbiota/genética , Rizosfera , Flavobacterium/genética , Microbiologia do Solo
10.
Bioresour Technol ; 406: 131009, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38909869

RESUMO

This paper examines the adaptive responses of microbial communities to gradual shifts in pH toward the mild alkaline range in anaerobic digestion (AD) systems. The results indicate that a pH of 8.0 serves as a critical upper limit for stable AD operation, beyond which microbial efficiency declines, underscoring the importance of microbial resilience against elevated pH stress. Specifically, hydrolysis genera, e.g. Eubacterium and Anaerobacterium, and syntrophic bacteria were crucial for reactor stability. Fibrobacter had also been shown to play a key role in the accumulation of propionate, thus leading to its dominance in the volatile fatty acid profile throughout the experimental phases. Overall, this investigation revealed the potential adaptability of microbial communities in AD systems to mild alkaline pH shifts, emphasizing the hydrolysis bacteria and syntrophic bacteria as key factors for maintaining metabolic function in elevated pH conditions.


Assuntos
Reatores Biológicos , Concentração de Íons de Hidrogênio , Anaerobiose , Bactérias/metabolismo , Álcalis/farmacologia , Álcalis/química , Ácidos Graxos Voláteis/metabolismo , Hidrólise
11.
Microbes Infect ; 26(3): 105249, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37956735

RESUMO

Salmonella enterica is a ubiquitous and clinically-important bacterial pathogen, able to infect and cause different diseases in a wide range of hosts. Here, we report the isolation and characterization of a new S. enterica serovar (13,23:i:-; S. Tirat-Zvi), belonging to the Havana supper-lineage that was isolated from a wild house sparrow (Passer domesticus) in Israel. Whole genome sequencing and complete assembly of its genome indicated a plasmid-free, 4.7 Mb genome that carries the Salmonella pathogenicity islands 1-6, 9, 19 and an integrative and conjugative element (ICE), encoding arsenic resistance genes. Phenotypically, S. Tirat-Zvi isolate TZ282 was motile, readily formed biofilm, more versatile in carbon source utilization than S. Typhimurium and highly tolerant to arsenic, but impaired in host cell invasion. In-vivo infection studies indicated that while S. Tirat-Zvi was able to infect and cause an acute inflammatory enterocolitis in young chicks, it was compromised in mice colonization and did not cause an inflammatory colitis in mice compared to S. Typhimurium. We suggest that these phenotypes reflect the distinctive ecological niche of this new serovar and its evolutionary adaptation to passerine birds, as a permissive host. Moreover, these results further illuminate the genetic, phenotypic and ecological diversity of S. enterica pathovars.


Assuntos
Arsênio , Salmonelose Animal , Salmonella enterica , Pardais , Animais , Camundongos , Salmonella enterica/genética , Salmonella typhimurium/genética , Sorogrupo , Salmonelose Animal/microbiologia , Virulência/genética
12.
Food Microbiol ; 36(2): 406-15, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24010623

RESUMO

The presence of microorganisms producing cell wall hydrolyzing enzymes such as xylanases during malting can improve mash filtration behavior and consequently have potential for more efficient wort production. In this study, the xylanolytic bacterial community during malting was assessed by isolation and cultivation on growth media containing arabinoxylan, and identification by 16S rRNA gene sequencing. A total of 33 species-level operational taxonomic units (OTUs) were found, taking into account a 3% sequence dissimilarity cut-off, belonging to four phyla (Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria) and 25 genera. Predominant OTUs represented xylanolytic bacteria identified as Sphingobacterium multivorum, Stenotrophomonas maltophilia, Aeromonas hydrophila and Pseudomonas fulva. DNA fingerprinting of all xylanolytic isolates belonging to S. multivorum obtained in this study revealed shifts in S. multivorum populations during the process. Xylanase activity was determined for a selection of isolates, with Cellulomonas flavigena showing the highest activity. The xylanase of this species was isolated and purified 23.2-fold by ultrafiltration, 40% ammonium sulfate precipitation and DEAE-FF ion-exchange chromatography and appeared relatively thermostable. This study will enhance our understanding of the role of microorganisms in the barley germination process. In addition, this study may provide a basis for microflora management during malting.


Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Hordeum/microbiologia , Xilanos/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo , Manipulação de Alimentos , Germinação , Hordeum/crescimento & desenvolvimento , Dados de Sequência Molecular , Filogenia
13.
Front Plant Sci ; 14: 1120968, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223788

RESUMO

Plant pathogenic microorganisms cause substantial yield losses in several economically important crops, resulting in economic and social adversity. The spread of such plant pathogens and the emergence of new diseases is facilitated by human practices such as monoculture farming and global trade. Therefore, the early detection and identification of pathogens is of utmost importance to reduce the associated agricultural losses. In this review, techniques that are currently available to detect plant pathogens are discussed, including culture-based, PCR-based, sequencing-based, and immunology-based techniques. Their working principles are explained, followed by an overview of the main advantages and disadvantages, and examples of their use in plant pathogen detection. In addition to the more conventional and commonly used techniques, we also point to some recent evolutions in the field of plant pathogen detection. The potential use of point-of-care devices, including biosensors, have gained in popularity. These devices can provide fast analysis, are easy to use, and most importantly can be used for on-site diagnosis, allowing the farmers to take rapid disease management decisions.

14.
Front Microbiol ; 14: 1276187, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107863

RESUMO

Some insect species have gained attention as efficient bioconverters of low-value organic substrates (i.e., residual streams) into high-value biomass. Black soldier fly (BSF) (Hermetia illucens) larvae are particularly interesting for bioconversion due to their ability to grow on a wide range of substrates, including low-value industrial residual streams. This is in part due to the plasticity of the gut microbiota of polyphagous insects, like BSF. Gut microbiota composition varies depending on rearing substrates, via a mechanism that might support the recruitment of microorganisms that facilitate digestion of a specific substrate. At the same time, specific microbial genera do persist on different substrates via unknown mechanisms. This study aimed to offer insights on this microbial plasticity by investigating how the composition of the bacterial community present in the gut of BSF larvae responds to two industrial residual streams: swill (a mixture of catering and supermarket leftovers) and distiller's dried grains with solubles. The bacterial biota composition of substrates, whole larvae at the beginning of the rearing period and at harvest, rearing residues, and larval gut regions were investigated through 16S rRNA gene sequencing. It was observed that both substrate and insect development influenced the bacterial composition of the whole larvae. Zooming in on the gut regions, there was a clear shift in community composition from a higher to a lower diversity between the anterior/middle midgut and the posterior midgut/hindgut, indicating a selective pressure occurring in the middle midgut region. Additionally, the abundance of the bacterial biota was always high in the hindgut, while its diversity was relatively low. Even more, the bacterial community in the hindgut was found to be relatively more conserved over the different substrates, harboring members of the BSF core microbiota. We postulate a potential role of the hindgut as a reservoir for insect-associated microbes. This warrants further research on that underexplored region of the intestinal tract. Overall, these findings contribute to our understanding of the bacterial biota structure and dynamics along the intestinal tract, which can aid microbiome engineering efforts to enhance larval performance on (industrial) residual streams.

15.
FEMS Microbiol Ecol ; 98(9)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35977400

RESUMO

Black soldier fly larvae (BSFL) belong to the most widely reared insects as an alternative protein source at industrial scale. Bacteria in the larval gut can provide benefits for the animal, though some bacteria can also be pathogenic for the insect. Accurate characterization of the BSFL microbiota is important for the production of BSFL in terms of yield and microbiological safety. In this study, 16S ribosomal RNA gene sequence data sets from 11 studies were re-analysed to gain better insights in the BSFL gut microbiota, potential factors that influence their composition, and differences between the gut and the whole larvae microbiota. A core gut microbiota was found consisting of members of Enterococcus, Klebsiella, Morganella, Providencia, and Scrofimicrobium. Further, the factors 'Study', 'Age' and 'Feed' (i.e. rearing substrate of the larvae) significantly affected the microbiota gut composition. When compared to whole larvae, a significantly lower diversity was found for gut samples, suggesting that the larvae harboured additional microbes on their cuticle or in the insect body. Universal choices in insect sample type, primer selection and bio-informatics analysis pipeline can strengthen future meta-analyses and improve our understanding of the BSFL gut microbiota towards the optimization of insect rearing conditions and substrates.


Assuntos
Dípteros , Microbiota , Animais , Bactérias/genética , Dípteros/microbiologia , Genes de RNAr , Larva/microbiologia , Microbiota/genética , RNA Ribossômico 16S/genética
16.
Microbiologyopen ; 11(6): e1337, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36479626

RESUMO

Although microbial communities of insects from larval to adult stage have been increasingly investigated in recent years, little is still known about the diversity and composition of egg-associated microbiomes. In this study, we used high-throughput amplicon sequencing and quantitative PCR to get a better understanding of the microbiome of insect eggs and how they are established using the Southern green stinkbug Nezara viridula (L.) (Hemiptera: Pentatomidae) as a study object. First, to determine the bacterial community composition, egg masses from two natural populations in Belgium and Italy were examined. Subsequently, microbial community establishment was assessed by studying stinkbug eggs of different ages obtained from laboratory strains (unlaid eggs collected from the ovaries, eggs less than 24 h old, and eggs collected 4 days after oviposition). Both the external and internal egg-associated microbiomes were analyzed by investigating egg washes and surface-sterilized washed eggs, respectively. Eggs from the ovaries were completely devoid of bacteria, indicating that egg-associated bacteria were deposited on the eggs during or after oviposition. The bacterial diversity of deposited eggs was very low, with on average 6.1 zero-radius operational taxonomic units (zOTUs) in the external microbiome and 1.2 zOTUs in internal samples of egg masses collected from the field. Bacterial community composition and density did not change significantly over time, suggesting limited bacterial growth. A Pantoea-like symbiont previously found in the midgut of N. viridula was found in every sample and generally occurred at high relative and absolute densities, especially in the internal egg samples. Additionally, some eggs harbored a Sodalis symbiont, which has previously been found in the abdomen of several insects, but so far not in N. viridula populations. We conclude that the egg-associated bacterial microbiome of N. viridula is species-poor and dominated by a few symbionts, particularly the species-specific obligate Pantoea-like symbiont.


Assuntos
Hemípteros , Microbiota , Animais , Bélgica , Itália
17.
Int J Food Microbiol ; 374: 109724, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35644105

RESUMO

Sour beers produced by barrel-aging of conventionally fermented beers are becoming increasingly popular. However, as the intricate interactions between the wood, the microbes and the beer are still unclear, wood maturation often leads to inconsistent end products with undesired sensory properties. Previous research on industrial barrel-aging of beer suggests that beer parameters like the ethanol content and bitterness play an important role in the microbial community composition and beer chemistry, but their exact impact still remains to be investigated. In this study, an experimentally tractable lab-scale system based on an in-vitro community of four key bacteria (Acetobacter malorum, Gluconobacter oxydans, Lactobacillus brevis and Pediococcus damnosus) and four key yeasts (Brettanomyces bruxellensis, Candida friedrichii, Pichia membranifaciens and Saccharomyces cerevisiae) that are consistently associated with barrel-aging of beer, was used to test the hypotheses that beer ethanol and bitterness impact microbial community composition and beer chemistry. Experiments were performed using different levels of ethanol (5.2 v/v%, 8 v/v% and 11 v/v%) and bitterness (13 ppm, 35 ppm and 170 ppm iso-α-acids), and beers were matured for 60 days. Samples were taken after 0, 10, 20, 30 and 60 days to monitor population densities and beer chemistry. Results revealed that all treatments and the maturation time significantly affected the microbial community composition and beer chemistry. More specifically, the ethanol treatments obstructed growth of L. brevis and G. oxydans and delayed fungal growth. The iso-α-acid treatments hindered growth of L. brevis and stimulated growth of P. membranifaciens, while the other strains remained unaffected. Beer chemistry was found to be affected by higher ethanol levels, which led to an increased extraction of wood-derived compounds. Furthermore, the distinct microbial communities also induced changes in the chemical composition of the beer samples, leading to concentration differences in beer- and wood-derived compounds like 4-ethyl guaiacol, 4-ethyl phenol, cis-oak lactone, vanillin, furfural and 5-hydroxymethyl furfural. Altogether, our results indicate that wood-aging of beer is affected by biotic and abiotic parameters, influencing the quality of the final product. Additionally, this work provides a new, cost-effective approach to study the production of barrel-aged beers based on a simplified microbial community model.


Assuntos
Cerveja , Microbiota , Cerveja/microbiologia , Etanol , Fermentação , Saccharomyces cerevisiae , Madeira
18.
Anim Microbiome ; 3(1): 73, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654483

RESUMO

BACKGROUND: The microbiome of many insects consists of a diverse community of microorganisms that can play critical roles in the functioning and overall health of their hosts. Although the microbial communities of insects have been studied thoroughly over the past decade, little is still known about how biotic interactions affect the microbial community structure in and on the bodies of insects. In insects that are attacked by parasites or parasitoids, it can be expected that the microbiome of the host insect is affected by the presence of these parasitic organisms that develop in close association with their host. In this study, we used high-throughput amplicon sequencing targeting both bacteria and fungi to test the hypothesis that parasitism by the endoparasitoid Cotesia glomerata affected the microbiome of its host Pieris brassicae. Healthy and parasitized caterpillars were collected from both natural populations and a laboratory culture. RESULTS: Significant differences in bacterial community structure were found between field-collected caterpillars and laboratory-reared caterpillars, and between the external and the internal microbiome of the caterpillars. Parasitism significantly altered the internal microbiome of caterpillars, but not the external microbiome. The internal microbiome of all parasitized caterpillars and of the parasitoid larvae in the caterpillar hosts was dominated by a Wolbachia strain, which was completely absent in healthy caterpillars, suggesting that the strain was transferred to the caterpillars during oviposition by the parasitoids. CONCLUSION: We conclude that biotic interactions such as parasitism have pronounced effects on the microbiome of an insect host and possibly affect interactions with higher-order insects.

19.
Int J Food Microbiol ; 339: 109030, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33387813

RESUMO

Currently, there is a strong interest in barrel ageing of finished, conventionally fermented beers, as a novel way to produce sour beers with a rich and complex flavour profile. The production process, however, remains largely a process of trial and error, often resulting in profit losses and inconsistency in quality. To improve product quality and consistency, a better understanding of the interactions between microorganisms, wood and maturing beer is needed. The aim of this study was to describe the temporal dynamics in microbial community composition, beer chemistry and sensory characteristics during barrel ageing of three conventionally fermented beers that differed in parameters like alcohol content and bitterness. Beers were matured for 38 weeks in new (two types of wood) and used (one type of wood) oak barrels. Beer samples were taken at the start of the maturation and after 2, 12 and 38 weeks. Microbial community composition, determined using amplicon sequencing of the V4 region of the bacterial 16S rRNA gene and the fungal ITS1 region, beer chemistry and sensory characteristics substantially changed throughout the maturation process. Likewise, total bacterial and fungal population densities generally increased during maturation. PerMANOVA revealed significant differences in the bacterial and fungal community composition of the three beers and across time points, but not between the different wood types. By contrast, significant differences in beer chemistry were found across the different beers, wood types and sampling points. Results also indicated that the outcome of the maturation process likely depends on the initial beer properties. Specifically, results suggested that beer bitterness may restrain the bacterial community composition, thereby having an impact on beer souring. While the bacterial community composition of moderately-hopped beers shifted to a dominance of lactic acid bacteria, the bacterial community of the high-bitterness beer remained fairly constant, with low population densities. Bacterial community composition of the moderate-bitterness beers also resembled those of traditional sours like lambic beers, hosting typical lambic brewing species like Pediococcus damnosus, Lactobacillus brevis and Acetobacter sp. Furthermore, results suggested that alcohol level may have affected the fungal community composition and extraction of wood compounds. More specifically, the concentration of wood compounds like cis-3-methyl-4-octanolide, trans-3-methyl-4-octanolide, eugenol and total polyphenols was higher in beers with a high alcohol content. Altogether, our results provide novel insights into the barrel ageing process of beer, and may pave the way for a new generation of sour beers.


Assuntos
Bactérias/classificação , Bactérias/genética , Cerveja/microbiologia , Microbiologia de Alimentos , Microbiota , Biodiversidade , Fermentação , Aromatizantes , Pediococcus , Polifenóis/análise , RNA Ribossômico 16S/genética , Paladar , Fatores de Tempo
20.
Microb Biotechnol ; 13(5): 1477-1488, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32705812

RESUMO

The study was conducted to evaluate the microbial dynamics during silage of maize stover and banana pseudostem in the environmental conditions of southern Ethiopia. To meet this objective, microsilos containing either maize stover or banana pseudostem, both with and without molasses, were prepared. Subsequently, samples were analysed on day 0, 7, 14, 30, 60 and 90 of the fermentation process. As a result, on day 7, all treatments except banana pseudostem without molasses showed a significant reduction in pH. It was also this silage type that supported the growth of Enterobacteriaceae longer than three other silage types, i.e. until 30 days. The yeasts and moulds and the Clostridum endospore counts also showed a reducing trend in early fermentation and afterwards remained constant until day 90. Illumina MiSeq sequencing revealed that Leuconostoc, Buttiauxella species and Enterobacteriaceae were the most abundant bacteria in the initial phases of the fermentation. Later on, Buttiauxella, Lactobacillus, Weissella and Bifidobacterium species were found to be dominant. In conclusion, silage of the two crop by-products is possible under South Ethiopian conditions. For banana pseudostem, the addition of molasses is crucial for a fast fermentation, in contrast to maize. Upscaling needs to be investigated for the two by-products.


Assuntos
Musa , Silagem , Fermentação , Concentração de Íons de Hidrogênio , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA