Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Am J Bot ; 109(6): 952-965, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35608078

RESUMO

PREMISE: Plants endemic to oceanic archipelagos are suitable for studying evolution, being isolated on substrates of different ages. Evolution has been recent, rendering traditionally employed sequences insufficiently variable for resolving relationships. This study includes sampling in the genus Tolpis (Asteraceae) from the Azores, Madeira, and Cape Verde, and expands upon an earlier study demonstrating the efficacy of multiplexed shotgun genotyping (MSG) for resolving relationships in Canarian Tolpis. METHODS: Genomic libraries for 90 accessions of Tolpis and two from the outgroup were generated for genotyping individuals using MSG. Loci were de novo assembled with iPyrad, which clusters MSG loci within and between samples. A maximum likelihood phylogeny was generated with RAxML. Ancestral area reconstruction was inferred using R package BioGeoBEARS. RESULTS: MSG data recovered a highly resolved phylogeny from population to inter-archipelago levels. Ancestral area reconstruction provided biogeographic hypotheses for the radiation of Macaronesian Tolpis. CONCLUSIONS: Four major clades were resolved. The Madeiran endemic T. macrorhiza is sister to other Tolpis. Species from the Canaries, Cape Verdes, and the continent are sister to T. succulenta from Madeira, which has a sister subclade of Azorean populations composed of T. succulenta and T. azorica. Population-level resolution suggests unrecognized taxa on several archipelagos. Ancestral reconstruction suggests initial dispersal from the continent to Madeira, with dispersal to the Azores, then dispersal from Madeira to the Canary Islands, with both subsequent dispersal to the Cape Verdes and back-dispersal to the continent. Single-island radiations and inter-island dispersal are implicated in divergence in Macaronesian Tolpis.


Assuntos
Asteraceae , Asteraceae/genética , Açores , Genótipo , Filogenia
2.
Am J Bot ; 107(8): 1189-1197, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32864742

RESUMO

PREMISE: The mating system has profound consequences, not only for ecology and evolution, but also for the conservation of threatened or endangered species. Unfortunately, small populations are difficult to study owing to limits on sample size and genetic marker diversity. Here, we estimated mating system parameters in three small populations of an island plant using genomic genotyping. Although self-incompatible (SI) species are known to often set some self-seed, little is known about how "leaky SI" affects selfing rates in nature or the role that multiple paternity plays in small populations. METHODS: We generalized the BORICE mating system program to determine the siring pattern within maternal families. We applied this algorithm to maternal families from three populations of Tolpis succulenta from Madeira Island and genotyped the progeny using RADseq. We applied BORICE to estimate each individual offspring as outcrossed or selfed, the paternity of each outcrossed offspring, and the level of inbreeding of each maternal plant. RESULTS: Despite a functional self-incompatibility system, these data establish T. succulenta as a pseudo-self-compatible (PSC) species. Two of 75 offspring were strongly indicated as products of self-fertilization. Despite selfing, all adult maternal plants were fully outbred. There was high differentiation among and low variation within populations, consistent with a history of genetic isolation of these small populations. There were generally multiple sires per maternal family. Twenty-two percent of sib contrasts (between outcrossed offspring within maternal families) shared the same sire. CONCLUSIONS: Genome-wide genotyping, combined with appropriate analytical methods, enables estimation of mating system and multiple paternity in small populations. These data address questions about the evolution of reproductive traits and the conservation of threatened populations.


Assuntos
Paternidade , Autofertilização , Genótipo , Ilhas , Portugal , Reprodução
3.
Nat Chem Biol ; 13(2): 181-187, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27918559

RESUMO

Ten-eleven translocation (TET) enzymes catalyze stepwise oxidation of 5-methylcytosine (mC) to yield 5-hydroxymethylcytosine (hmC) and the rarer bases 5-formylcytosine (fC) and 5-carboxylcytosine (caC). Stepwise oxidation obscures how each individual base forms and functions in epigenetic regulation, and prompts the question of whether TET enzymes primarily serve to generate hmC or are adapted to produce fC and caC as well. By mutating a single, conserved active site residue in human TET2, Thr1372, we uncovered enzyme variants that permit oxidation to hmC but largely eliminate fC and caC. Biochemical analyses, combined with molecular dynamics simulations, elucidated an active site scaffold that is required for wild-type (WT) stepwise oxidation and that, when perturbed, explains the mutants' hmC-stalling phenotype. Our results suggest that the TET2 active site is shaped to enable higher-order oxidation and provide the first TET variants that could be used to probe the biological functions of hmC separately from fC and caC.


Assuntos
5-Metilcitosina/análogos & derivados , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mutação , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , 5-Metilcitosina/química , 5-Metilcitosina/metabolismo , Domínio Catalítico/genética , Proteínas de Ligação a DNA/química , Dioxigenases , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Oxirredução , Proteínas Proto-Oncogênicas/química
4.
J Plant Res ; 132(2): 295, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30805736

RESUMO

The article Factors driving adaptive radiation in plants of oceanic islands: a case study from the Juan Fernández Archipelago, written by Koji Takayama, Daniel J. Crawford, Patricio López­Sepúlveda, Josef Greimler, Tod F. Stuessy was originally published electronically on the publisher's internet portal (currently SpringerLink) on 13 March 2018 without open access.

5.
J Plant Res ; 131(3): 469-485, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29536201

RESUMO

Adaptive radiation is a common evolutionary phenomenon in oceanic islands. From one successful immigrant population, dispersal into different island environments and directional selection can rapidly yield a series of morphologically distinct species, each adapted to its own particular environment. Not all island immigrants, however, follow this evolutionary pathway. Others successfully arrive and establish viable populations, but they remain in the same ecological zone and only slowly diverge over millions of years. This transformational speciation, or anagenesis, is also common in oceanic archipelagos. The critical question is why do some groups radiate adaptively and others not? The Juan Fernández Islands contain 105 endemic taxa of angiosperms, 49% of which have originated by adaptive radiation (cladogenesis) and 51% by anagenesis, hence providing an opportunity to examine characteristics of taxa that have undergone both types of speciation in the same general island environment. Life form, dispersal mode, and total number of species in progenitors (genera) of endemic angiosperms in the archipelago were investigated from literature sources and compared with modes of speciation (cladogenesis vs. anagenesis). It is suggested that immigrants tending to undergo adaptive radiation are herbaceous perennial herbs, with leaky self-incompatible breeding systems, good intra-island dispersal capabilities, and flexible structural and physiological systems. Perhaps more importantly, the progenitors of adaptively radiated groups in islands are those that have already been successful in adaptations to different environments in source areas, and which have also undergone eco-geographic speciation. Evolutionary success via adaptive radiation in oceanic islands, therefore, is less a novel feature of island lineages but rather a continuation of tendency for successful adaptive speciation in lineages of continental source regions.


Assuntos
Adaptação Fisiológica , Especiação Genética , Magnoliopsida/fisiologia , Evolução Biológica , Chile , Ecologia , Genética Populacional , Geografia , Ilhas , Magnoliopsida/genética
6.
New Phytol ; 216(4): 1256-1267, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28892151

RESUMO

Angiosperm diversity has been shaped by mating system evolution, with the most common transition from outcrossing to self-fertilizing. To investigate the genetic basis of this transition, we performed crosses between two species endemic to the Canary Islands, the self-compatible (SC) species Tolpis coronopifolia and its self-incompatible (SI) relative Tolpis santosii. We scored self-compatibility as self-seed set of recombinant plants within two F2 populations. To map and genetically characterize the breakdown of SI, we built a draft genome sequence of T. coronopifolia, genotyped F2 plants using multiplexed shotgun genotyping (MSG), and located MSG markers to the genome sequence. We identified a single quantitative trait locus (QTL) that explains nearly all variation in self-seed set in both F2 populations. To identify putative causal genetic variants within the QTL, we performed transcriptome sequencing on mature floral tissue from both SI and SC species, constructed a transcriptome for each species, and then located each predicted transcript to the T. coronopifolia genome sequence. We annotated each predicted gene within the QTL and found two strong candidates for SI breakdown. Each gene has a coding sequence insertion/deletion mutation within the SC species that produces a truncated protein. Homologs of each gene have been implicated in pollen development, pollen germination, and pollen tube growth in other species.


Assuntos
Asteraceae/genética , Autoincompatibilidade em Angiospermas/genética , Estudos de Associação Genética , Variação Genética , Genoma de Planta , Locos de Características Quantitativas
7.
J Am Chem Soc ; 138(3): 730-3, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26734843

RESUMO

Modification of cytosine-guanine dinucleotides (CpGs) is a key part of mammalian epigenetic regulation and helps shape cellular identity. Tet enzymes catalyze stepwise oxidation of 5-methylcytosine (mC) in CpGs to 5-hydroxymethylcytosine (hmC), or onward to 5-formylcytosine (fC) or 5-carboxylcytosine (caC). The multiple mC oxidation products, while intricately linked, are postulated to play independent epigenetic roles, making it critical to understand how the products of stepwise oxidation are established and maintained. Using highly sensitive isotope-based studies, we newly show that Tet2 can yield fC and caC by iteratively acting in a single encounter with mC-containing DNA, without release of the hmC intermediate, and that the modification state of the complementary CpG has little impact on Tet2 activity. By revealing Tet2 as an iterative, de novo mC oxygenase, our study provides insight into how features intrinsic to Tet2 shape the epigenetic landscape.


Assuntos
5-Metilcitosina/metabolismo , Biocatálise , Dioxigenases/metabolismo , 5-Metilcitosina/química , Dioxigenases/química , Estrutura Molecular , Oxirredução
8.
Nucleic Acids Res ; 42(15): 9964-75, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25064858

RESUMO

Antibody maturation is a critical immune process governed by the enzyme activation-induced deaminase (AID), a member of the AID/APOBEC DNA deaminase family. AID/APOBEC deaminases preferentially target cytosine within distinct preferred sequence motifs in DNA, with specificity largely conferred by a small 9-11 residue protein loop that differs among family members. Here, we aimed to determine the key functional characteristics of this protein loop in AID and to thereby inform our understanding of the mode of DNA engagement. To this end, we developed a methodology (Sat-Sel-Seq) that couples saturation mutagenesis at each position across the targeting loop, with iterative functional selection and next-generation sequencing. This high-throughput mutational analysis revealed dominant characteristics for residues within the loop and additionally yielded enzymatic variants that enhance deaminase activity. To rationalize these functional requirements, we performed molecular dynamics simulations that suggest that AID and its hyperactive variants can engage DNA in multiple specific modes. These findings align with AID's competing requirements for specificity and flexibility to efficiently drive antibody maturation. Beyond insights into the AID-DNA interface, our Sat-Sel-Seq approach also serves to further expand the repertoire of techniques for deep positional scanning and may find general utility for high-throughput analysis of protein function.


Assuntos
Citidina Desaminase/química , Citidina Desaminase/metabolismo , DNA/metabolismo , Alanina/genética , Citidina Desaminase/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Simulação de Dinâmica Molecular , Mutagênese , Análise de Sequência de DNA , Relação Estrutura-Atividade
9.
Proc Natl Acad Sci U S A ; 110(17): 6783-8, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23569281

RESUMO

Removal of introns from the precursors to messenger RNA (pre-mRNAs) requires close apposition of intron ends by the spliceosome, but when and how apposition occurs is unclear. We investigated the process by which intron ends are brought together using single-molecule fluorescence resonance energy transfer together with colocalization single-molecule spectroscopy, a combination of methods that can directly reveal how conformational transitions in macromolecular machines are coupled to specific assembly and disassembly events. The FRET measurements suggest that the 5' splice site and branch site remain physically separated throughout spliceosome assembly, and only approach one another after the spliceosome is activated for catalysis, at which time the pre-mRNA becomes highly dynamic. Separation of the sites of chemistry until very late in the splicing pathway may be crucial for preventing splicing at incorrect sites.


Assuntos
Conformação de Ácido Nucleico , Sítios de Splice de RNA/genética , Splicing de RNA/fisiologia , Spliceossomos/fisiologia , Sequência de Bases , Primers do DNA/genética , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Dados de Sequência Molecular , Oligonucleotídeos/genética , Saccharomyces cerevisiae , Análise Espectral
10.
New Phytol ; 205(1): 415-28, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25209139

RESUMO

This study analyses and compares the genetic signatures of anagenetic and cladogenetic speciation in six species of the genus Robinsonia (Asteraceae, Senecioneae), endemic to the Juan Fernández Islands, Chile. Population genetic structure was analyzed by amplified fragment length polymorphism (AFLP) and microsatellite (simple sequence repeat, SSR) markers from 286 and 320 individuals, respectively, in 28 populations. Each species is genetically distinct. Previous hypotheses of classification among these species into subgenera and sections, via morphological, phytochemical, isozymic and internal transcribed spacer (ITS) data, have been confirmed, except that R. saxatilis appears to be related to R. gayana rather than R. evenia. Analysis of phylogenetic results and biogeographic context suggests that five of these species have originated by cladogenesis and adaptive radiation on the older Robinson Crusoe Island. The sixth species, R. masafuerae, restricted to the younger Alejandro Selkirk Island, is closely related to and an anagenetic derivative of R. evenia from Robinson Crusoe. Microsatellite and AFLP data reveal considerable genetic variation among the cladogenetically derived species of Robinsonia, but within each the genetic variation is lower, highlighting presumptive genetic isolation and rapid radiation. The anagenetically derived R. masafuerae harbors a level of genetic variation similar to that of its progenitor, R. evenia. This is the first direct comparison of the genetic consequences of anagenetic and cladogenetic speciation in plants of an oceanic archipelago.


Assuntos
Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Asteraceae/genética , Especiação Genética , Repetições de Microssatélites/genética , Chile , Variação Genética , Geografia , Filogenia , Especificidade da Espécie
11.
Am J Bot ; 102(4): 634-41, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25878096

RESUMO

PREMISE OF THE STUDY: Endemic plants on oceanic islands have long served as model systems for studying patterns and processes of evolution. However, phylogenetic studies of island plants frequently illustrate a decoupling of molecular divergence and ecological/morphological diversity, resulting in phylogenies lacking the resolution required to interpret patterns of evolution in a phylogenetic context. The current study uses the primarily Macaronesian flowering plant genus Tolpis to illustrate the utility of multiplexed shotgun genotyping (MSG) for resolving relationships at relatively deep (among archipelagos) and very shallow (within archipelagos) nodes in this small, yet diverse insular plant lineage that had not been resolved with other molecular markers. METHODS: Genomic libraries for 27 accessions of Macaronesian Tolpis were generated for genotyping individuals using MSG, a form of reduced-representation sequencing, similar to restriction-site-associated DNA markers (RADseq). The resulting data files were processed using the program pyRAD, which clusters MSG loci within and between samples. Phylogenetic analyses of the aligned data matrix were conducted using RAxML. KEY RESULTS: Analysis of MSG data recovered a highly resolved phylogeny with generally strong support, including the first robust inference of relationships within the highly diverse Canary Island clade of Tolpis. CONCLUSIONS: The current study illustrates the utility of MSG data for resolving relationships in lineages that have undergone recent, rapid diversification resulting in extensive ecological and morphological diversity. We suggest that a similar approach may prove generally useful for other rapid plant radiations where resolving phylogeny has been difficult.


Assuntos
Asteraceae/genética , Evolução Molecular , Genoma de Planta , Técnicas de Genotipagem/métodos , Asteraceae/classificação , Biblioteca Genômica , Ilhas , Análise de Sequência de DNA , Espanha
12.
J Plant Res ; 128(1): 73-90, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25292282

RESUMO

A common mode of speciation in oceanic islands is by anagenesis, wherein an immigrant arrives and through time transforms by mutation, recombination, and drift into a morphologically and genetically distinct species, with the new species accumulating a high level of genetic diversity. We investigate speciation in Drimys confertifolia, endemic to the two major islands of the Juan Fernández Archipelago, Chile, to determine genetic consequences of anagenesis, to examine relationships among populations of D. confertifolia and the continental species D. winteri and D. andina, and to test probable migration routes between the major islands. Population genetic analyses were conducted using AFLPs and nuclear microsatellites of 421 individuals from 42 populations from the Juan Fernández islands and the continent. Drimys confertifolia shows a wide genetic variation within populations on both islands, and values of genetic diversity within populations are similar to those found within populations of the continental progenitor. The genetic results are compatible with the hypothesis of high levels of genetic variation accumulating within anagenetically derived species in oceanic islands, and with the concept of little or no geographical partitioning of this variation over the landscape. Analysis of the probability of migration within the archipelago confirms colonization from the older island, Robinson Crusoe, to the younger island Alejandro Selkirk.


Assuntos
Drimys/genética , Especiação Genética , Ilhas , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Chile , Variação Genética , Genética Populacional , Geografia , Repetições de Microssatélites/genética , Modelos Biológicos , Filogenia
13.
Plants (Basel) ; 13(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38475459

RESUMO

Erigeron represents the third largest genus on the Juan Fernández Islands, with six endemic species, five of which occur exclusively on the younger Alejandro Selkirk Island with one species on both islands. While its continental sister species is unknown, Erigeron on the Juan Fernández Islands appears to be monophyletic and most likely evolved from South American progenitor species. We characterized the complete chloroplast genomes of five Erigeron species, including accessions of E. fernandezia and one each from Alejandro Selkirk and Robinson Crusoe Islands, with the purposes of elucidating molecular evolution and phylogenetic relationships. We found highly conserved chloroplast genomes in size, gene order and contents, and further identified several mutation hotspot regions. In addition, we found two positively selected chloroplast genes (ccsA and ndhF) among species in the islands. The complete plastome sequences confirmed the monophyly of Erigeron in the islands and corroborated previous phylogenetic relationships among species. New findings in the current study include (1) two major lineages, E. turricola-E. luteoviridis and E. fernandezia-E. ingae-E. rupicola, (2) the non-monophyly of E. fernandezia occurring on the two islands, and (3) the non-monophyly of the alpine species E. ingae complex.

14.
Science ; 383(6685): 877-884, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38386760

RESUMO

Climate-induced northward advance of boreal forest is expected to lessen albedo, alter carbon stocks, and replace tundra, but where and when this advance will occur remains largely unknown. Using data from 19 sites across 22 degrees of longitude along the tree line of northern Alaska, we show a stronger temporal correlation of tree ring growth with open water uncovered by retreating Arctic sea ice than with air temperature. Spatially, our results suggest that tree growth, recruitment, and range expansion are causally linked to open water through associated warmer temperatures, deeper snowpacks, and improved nutrient availability. We apply a meta-analysis to 82 circumarctic sites, finding that proportionally more tree lines have advanced where proximal to ongoing sea ice loss. Taken together, these findings underpin how and where changing sea ice conditions facilitate high-latitude forest advance.

15.
Am J Bot ; 100(6): 1221-6, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23733530

RESUMO

PREMISE OF THE STUDY: Invasive plant species threaten native plants in multiple ways, one of which is genetic assimilation through hybridization. However, information regarding hybridization between related alien and native plant species is generally lacking. In Hawaii, the invasive Central American species Bidens pilosa and Bidens alba have colonized natural areas and often grow alongside the native Hawaiian Bidens species, a clade representing an adaptive radiation of 27 endemic taxa, many of which are threatened or endangered. • METHODS: To assess the risk of hybridization between introduced and native Hawaiian Bidens (which will readily hybridize with one another), we undertook crosses in cultivation between the invasive species and nine native Bidens taxa. • KEY RESULTS: The majority of the crosses formed no viable seed. Although seed did mature in several of the crosses, morphological screening of the resulting seedlings indicated that they were the result of self-pollination. • CONCLUSIONS: This result suggests that B. alba and B. pilosa are incapable of hybridizing with these Hawaiian Bidens taxa. Further, we found that B. alba in Hawaii was self-compatible, despite self-incompatibility throughout its native range, and that the tetraploid species B. alba and the hexaploid species B. pilosa were cross-compatible, although pollen fertility was low.


Assuntos
Asteraceae/genética , Bidens/genética , Hibridização Genética , Espécies Introduzidas , Asteraceae/fisiologia , Havaí , Reprodutibilidade dos Testes , Sementes/fisiologia , Especificidade da Espécie
16.
Am J Bot ; 100(4): 722-34, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23510759

RESUMO

PREMISE OF THE STUDY: Anagenesis (or phyletic evolution) is one mode of speciation that occurs in the evolution of plants on oceanic islands. Of two endemic species on the Juan Fernández Islands (Chile), Myrceugenia fernandeziana and M. schulzei (Myrtaceae), believed to have originated anagenetically from different continental progenitors, the first is endemic to Robinson Crusoe Island and has no clear tie to continental relatives; the last is endemic to the younger island, Alejandro Selkirk Island, and has close affinity to M. colchaguensis in mainland Chile. METHODS: Using AFLPs and six nuclear microsatellites from 381 individuals representing 33 populations, we determined patterns of genetic variation within and among populations on both islands and between those of the islands and mainland. KEY RESULTS: Considerable genetic variation was found within populations on both islands. The level of gene diversity within M. schulzei was equivalent to that of its close continental relative M. colchaguensis. Genetic diversity was not partitioned geographically in M. fernandeziana and was weakly so and nonsignificantly in M. schulzei. CONCLUSIONS: The high genetic variation in both taxa is most likely due to anagenetic speciation. Subsidence of the older island Robinson Crusoe, landscape erosion, and restructuring of communities have severely reduced the overall island population to a single panmictic system. On the younger and less modified Alejandro Selkirk Island, slightly stronger patterns of genetic divergence are seen in M. schulzei. Because both species are genetically diverse and number in the thousands of individuals, neither is presently endangered in the archipelago.


Assuntos
Variação Genética , Myrtaceae/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Chile , Repetições de Microssatélites , Filogeografia
17.
Plants (Basel) ; 12(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38068673

RESUMO

The human footprint on marine and terrestrial ecosystems of the planet has been substantial, largely due to the increase in the human population with associated activities and resource utilization. Oceanic islands have been particularly susceptible to such pressures, resulting in high levels of loss of biodiversity and reductions in the numbers and sizes of wild populations. One archipelago that has suffered from human impact has been the Juan Fernández (Robinson Crusoe) Archipelago, a Chilean national park located 667 km west of Valparaíso at 33° S. latitude. The park consists of three principal islands: Robinson Crusoe Island (48 km2); Santa Clara Island (2.2 km2); and Alejandro Selkirk Island (50 km2). The latter island lies 181 kms further west into the Pacific Ocean. No indigenous peoples ever visited or lived on any of these islands; they were first discovered by the Spanish navigator, Juan Fernández, in 1574. From that point onward, a series of European visitors arrived, especially to Robinson Crusoe Island. They began to cut the forests, and such activity increased with the establishment of a permanent colony in 1750 that has persisted to the present day. Pressures on the native and endemic flora increased due to the introduction of animals, such as goats, rats, dogs, cats, pigs, and rabbits. Numerous invasive plants also arrived, some deliberately introduced and others arriving inadvertently. At present, more than three-quarters of the endemic and native vascular species of the flora are either threatened or endangered. The loss of vegetation has also resulted in a loss of genetic variability in some species as populations are reduced in size or go extinct. It is critical that the remaining genetic diversity be conserved, and genomic markers would provide guidelines for the conservation of the diversity of the endemic flora. To preserve the unique flora of these islands, further conservation measures are needed, especially in education and phytosanitary monitoring.

18.
Plants (Basel) ; 10(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34961110

RESUMO

Duckweeds comprise a distinctive clade of pleustophytic monocots that traditionally has been classified as the family Lemnaceae. However, molecular evidence has called into question their phylogenetic independence, with some authors asserting instead that duckweeds should be reclassified as subfamily Lemnoideae of an expanded family Araceae. Although a close phylogenetic relationship of duckweeds with traditional Araceae has been supported by multiple studies, the taxonomic disposition of duckweeds must be evaluated more critically to promote nomenclatural stability and utility. Subsuming duckweeds as a morphologically incongruent lineage of Araceae effectively eliminates the family category of Lemnaceae that has been widely used for many years. Instead, we suggest that Araceae subfamily Orontioideae should be restored to family status as Orontiaceae, which thereby would enable the recognition of three morphologically and phylogenetically distinct lineages: Araceae, Lemnaceae, and Orontiaceae.

19.
ACS Pharmacol Transl Sci ; 4(3): 1214-1226, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34151211

RESUMO

Activation-induced deaminase (AID) not only mutates DNA within the immunoglobulin loci to generate antibody diversity, but it also promotes development of B cell lymphomas. To tame this mutagen, we performed a quantitative high-throughput screen of over 90 000 compounds to see if AID activity could be mitigated. The enzymatic activity was assessed in biochemical assays to detect cytosine deamination and in cellular assays to measure class switch recombination. Three compounds showed promise via inhibition of switching in a transformed B cell line and in murine splenic B cells. These compounds have similar chemical structures, which suggests a shared mechanism of action. Importantly, the inhibitors blocked AID, but not a related cytosine DNA deaminase, APOBEC3B. We further determined that AID was continually expressed for several days after B cell activation to induce switching. This first report of small molecules that inhibit AID can be used to gain regulatory control over base editors.

20.
RNA ; 14(1): 170-9, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18025254

RESUMO

The excision of introns from nascent eukaryotic transcripts is catalyzed by the spliceosome, a highly complex and dynamic macromolecular machine composed of RNA and protein. Because of its complexity, biochemical analysis of the spliceosome has been previously limited to bulk assays in largely unfractionated cell extracts. We now report development of methodologies for studying the splicing of isolated single pre-mRNA molecules in real time. In this system, a fluorescently tagged pre-mRNA is tethered to a glass surface via its 3'-end. Splicing can be observed in Saccharomyces cerevisiae whole cell extract by monitoring loss of intron-specific fluorescence with a multi-wavelength total internal reflection fluorescence (TIRF) microscope. To prolong fluorophore lifetime, two enzyme-based O2 scavenging systems compatible with splicing were also developed. This work provides a powerful new approach for elucidating the mechanisms of spliceosome function and demonstrates the feasibility of utilizing TIRF microscopy for biochemical studies of single molecules in highly complex environments.


Assuntos
Precursores de RNA/genética , Splicing de RNA , RNA Fúngico/genética , RNA Mensageiro/genética , Sequência de Bases , Células HeLa , Humanos , Íntrons , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA