Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Nucleic Acids Res ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189461

RESUMO

R-loops are three-stranded RNA-DNA hybrid structures that play important regulatory roles, but excessive or deregulated R-loops formation can trigger DNA damage and genome instability. Digestion of R-loops is mainly relying on the action of two specialized ribonucleases: RNaseH1 and RNaseH2. RNaseH2 is the main enzyme carrying out the removal of misincorporated rNMPs during DNA replication or repair, through the Ribonucleotide Excision Repair (RER) pathway. We have recently shown that the human RNA helicase DDX3X possessed RNaseH2-like activity, being able to substitute RNaseH2 in reconstituted RER reactions. Here, using synthetic R-loop mimicking substrates, we could show that human DDX3X alone was able to both displace and degrade the ssRNA strand hybridized to DNA. Moreover, DDX3X was found to physically interact with human RNaseH2. Such interaction suppressed the nuclease and helicase activities of DDX3X, but stimulated severalfold the catalytic activity of the trimeric RNaseH2, but not of RNaseH1. Finally, silencing of DDX3X in human cells caused accumulation of RNA-DNA hybrids and phosphorylated RPA foci. These results support a role of DDX3X as a scaffolding protein and auxiliary factor for RNaseH2 during R-loop degradation.

2.
Brain ; 146(12): 5060-5069, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37450567

RESUMO

Cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) is an autosomal recessive neurodegenerative disease, usually caused by biallelic AAGGG repeat expansions in RFC1. In this study, we leveraged whole genome sequencing data from nearly 10 000 individuals recruited within the Genomics England sequencing project to investigate the normal and pathogenic variation of the RFC1 repeat. We identified three novel repeat motifs, AGGGC (n = 6 from five families), AAGGC (n = 2 from one family) and AGAGG (n = 1), associated with CANVAS in the homozygous or compound heterozygous state with the common pathogenic AAGGG expansion. While AAAAG, AAAGGG and AAGAG expansions appear to be benign, we revealed a pathogenic role for large AAAGG repeat configuration expansions (n = 5). Long-read sequencing was used to characterize the entire repeat sequence, and six patients exhibited a pure AGGGC expansion, while the other patients presented complex motifs with AAGGG or AAAGG interruptions. All pathogenic motifs appeared to have arisen from a common haplotype and were predicted to form highly stable G quadruplexes, which have previously been demonstrated to affect gene transcription in other conditions. The assessment of these novel configurations is warranted in CANVAS patients with negative or inconclusive genetic testing. Particular attention should be paid to carriers of compound AAGGG/AAAGG expansions when the AAAGG motif is very large (>500 repeats) or the AAGGG motif is interrupted. Accurate sizing and full sequencing of the satellite repeat with long-read sequencing is recommended in clinically selected cases to enable accurate molecular diagnosis and counsel patients and their families.


Assuntos
Ataxia Cerebelar , Doenças do Sistema Nervoso Periférico , Síndrome , Doenças Vestibulares , Humanos , Vestibulopatia Bilateral , Ataxia Cerebelar/genética , Ataxia Cerebelar/diagnóstico , Doenças Neurodegenerativas , Doenças do Sistema Nervoso Periférico/diagnóstico , Doenças do Sistema Nervoso Periférico/genética , Doenças Vestibulares/diagnóstico , Doenças Vestibulares/genética
3.
Bioorg Chem ; 128: 106071, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35932498

RESUMO

The Bcr-Abl tyrosine kinase (TK) is the molecular hallmark of chronic myeloid leukemia (CML). Src is another TK kinase whose involvement in CML was widely demonstrated. Small molecules active as dual Src/Bcr-Abl inhibitors emerged as effective targeted therapies for CML and a few compounds are currently in clinical use. In this study, we applied a target-oriented approach to identify a family of pyrazolo[3,4-d]pyrimidines as dual Src/Bcr-Abl inhibitors as anti-leukemia agents. Considering the high homology between Src and Bcr-Abl, in-house Src inhibitors 8a-l and new analogue compounds 9a-n were screened as dual Src/Bcr-Abl inhibitors. The antiproliferative activity on K562 CML cells and the ADME profile were determined for the most promising compounds. Molecular modeling studies elucidated the binding mode of the inhibitors into the Bcr-Abl (wt) catalytic pocket. Compounds 8j and 8k showed nanomolar activities in enzymatic and cellular assays, together with favorable ADME properties, emerging as promising candidates for CML therapy. Finally, derivatives 9j and 9k, emerging as valuable inhibitors of the most aggressive Bcr-Abl mutation, T315I, constitute a good starting point in the search for compounds able to treat drug-resistant forms of CML. Overall, this study allowed us to identify more potent compounds than those previously reported by the group, marking a step forward in searching for new antileukemic agents.


Assuntos
Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Benzamidas/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl , Humanos , Mesilato de Imatinib , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/química
4.
J Enzyme Inhib Med Chem ; 37(1): 2382-2394, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36050846

RESUMO

Inhibition of c-Src is considered one of the most studied approaches to cancer treatment, with several heterocyclic compounds approved during the last 15 years as chemotherapeutic agents. Starting from the biological evaluation of an in-house collection of small molecules, indolinone was selected as the most promising scaffold. In this work, several functionalised indolinones were synthesised and their inhibitory potency and cytotoxic activity were assayed. The pharmacological profile of the most active compounds, supported by molecular modelling studies, revealed that the presence of an amino group increased the affinity towards the ATP-binding site of c-Src. At the same time, bulkier derivatizations seemed to improve the interactions within the enzymatic pocket. Overall, these data represent an early stage towards the optimisation of new, easy-to-be functionalised indolinones as potential c-Src inhibitors.


Assuntos
Antineoplásicos , Inibidores de Proteínas Quinases , Antineoplásicos/química , Simulação de Acoplamento Molecular , Oxindóis , Proteínas Tirosina Quinases , Relação Estrutura-Atividade
5.
Int J Mol Sci ; 22(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34068992

RESUMO

Ribonucleotides misincorporated in the human genome are the most abundant DNA lesions. The 2'-hydroxyl group makes them prone to spontaneous hydrolysis, potentially resulting in strand breaks. Moreover, their presence may decrease the rate of DNA replication causing replicative fork stalling and collapse. Ribonucleotide removal is initiated by Ribonuclease H2 (RNase H2), the key player in Ribonucleotide Excision Repair (RER). Its absence leads to embryonic lethality in mice, while mutations decreasing its activity cause Aicardi-Goutières syndrome. DNA geometry can be altered by DNA lesions or by peculiar sequences forming secondary structures, like G-quadruplex (G4) and trinucleotide repeats (TNR) hairpins, which significantly differ from canonical B-form. Ribonucleotides pairing to lesioned nucleotides, or incorporated within non-B DNA structures could avoid RNase H2 recognition, potentially contributing to genome instability. In this work, we investigate the ability of RNase H2 to process misincorporated ribonucleotides in a panel of DNA substrates showing different geometrical features. RNase H2 proved to be a flexible enzyme, recognizing as a substrate the majority of the constructs we generated. However, some geometrical features and non-canonical DNA structures severely impaired its activity, suggesting a relevant role of misincorporated ribonucleotides in the physiological instability of specific DNA sequences.


Assuntos
Replicação do DNA , DNA/química , Ribonuclease H/química , Ribonuclease H/metabolismo , Ribonucleotídeos/química , Catálise , Humanos
6.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673424

RESUMO

Telomerase negative cancer cell types use the Alternative Lengthening of Telomeres (ALT) pathway to elongate telomeres ends. Here, we show that silencing human DNA polymerase (Pol λ) in ALT cells represses ALT activity and induces telomeric stress. In addition, replication stress in the absence of Pol λ, strongly affects the survival of ALT cells. In vitro, Pol λ can promote annealing of even a single G-rich telomeric repeat to its complementary strand and use it to prime DNA synthesis. The noncoding telomeric repeat containing RNA TERRA and replication protein A negatively regulate this activity, while the Protection of Telomeres protein 1 (POT1)/TPP1 heterodimer stimulates Pol λ. Pol λ associates with telomeres and colocalizes with TPP1 in cells. In summary, our data suggest a role of Pol λ in the maintenance of telomeres by the ALT mechanism.


Assuntos
Aminopeptidases/metabolismo , DNA Polimerase beta/metabolismo , Quadruplex G , Serina Proteases/metabolismo , Homeostase do Telômero , Proteínas de Ligação a Telômeros/metabolismo , Linhagem Celular Tumoral , Humanos , Complexos Multiproteicos , Proteína de Replicação A/metabolismo , Complexo Shelterina , Telômero/química , Telômero/metabolismo
7.
Molecules ; 26(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34443620

RESUMO

G-quadruplexes (G4s) are higher-order supramolecular structures, biologically important in the regulation of many key processes. Among all, the recent discoveries relating to RNA-G4s, including their potential involvement as antiviral targets against COVID-19, have triggered the ever-increasing need to develop selective molecules able to interact with parallel G4s. Naphthalene diimides (NDIs) are widely exploited as G4 ligands, being able to induce and strongly stabilize these structures. Sometimes, a reversible NDI-G4 interaction is also associated with an irreversible one, due to the cleavage and/or modification of G4s by functional-NDIs. This is the case of NDI-Cu-DETA, a copper(II) complex able to cleave G4s in the closest proximity to the target binding site. Herein, we present two original Cu(II)-NDI complexes, inspired by NDI-Cu-DETA, differently functionalized with 2-(2-aminoethoxy)ethanol side-chains, to selectively drive redox-catalyzed activity towards parallel G4s. The selective interaction toward parallel G4 topology, controlled by the presence of 2-(2-aminoethoxy)ethanol side chains, was already firmly demonstrated by us using core-extended NDIs. In the present study, the presence of protonable moieties and the copper(II) cavity, increases the binding affinity and specificity of these two NDIs for a telomeric RNA-G4. Once defined the copper coordination relationship and binding constants by competition titrations, ability in G4 stabilization, and ROS-induced cleavage were analyzed. The propensity in the stabilization of parallel topology was highlighted for both of the new compounds HP2Cu and PE2Cu. The results obtained are particularly promising, paving the way for the development of new selective functional ligands for binding and destructuring parallel G4s.


Assuntos
Complexos de Coordenação/química , Cobre/química , Quadruplex G , Imidas/química , Naftalenos/química , Sítios de Ligação , DEET/química , Ligantes , Oxirredução , Polietilenoglicóis/química , Relação Estrutura-Atividade
8.
Nucleic Acids Res ; 46(18): 9816-9828, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30102405

RESUMO

p15PAF is an oncogenic intrinsically disordered protein that regulates DNA replication and lesion bypass by interacting with the human sliding clamp PCNA. In the absence of DNA, p15PAF traverses the PCNA ring via an extended PIP-box that contacts the sliding surface. Here, we probed the atomic-scale structure of p15PAF-PCNA-DNA ternary complexes. Crystallography and MD simulations show that, when p15PAF occupies two subunits of the PCNA homotrimer, DNA within the ring channel binds the unoccupied subunit. The structure of PCNA-bound p15PAF in the absence and presence of DNA is invariant, and solution NMR confirms that DNA does not displace p15PAF from the ring wall. Thus, p15PAF reduces the available sliding surfaces of PCNA, and may function as a belt that fastens the DNA to the clamp during synthesis by the replicative polymerase (pol δ). This constraint, however, may need to be released for efficient DNA lesion bypass by the translesion synthesis polymerase (pol η). Accordingly, our biochemical data show that p15PAF impairs primer synthesis by pol η-PCNA holoenzyme against both damaged and normal DNA templates. In light of our findings, we discuss the possible mechanistic roles of p15PAF in DNA replication and suppression of DNA lesion bypass.


Assuntos
Proteínas de Transporte/química , DNA/química , Proteínas Intrinsicamente Desordenadas/química , Antígeno Nuclear de Célula em Proliferação/química , Proteínas de Transporte/genética , Cristalografia por Raios X , DNA/genética , DNA Polimerase III/química , DNA Polimerase III/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , Escherichia coli/genética , Holoenzimas/química , Holoenzimas/genética , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Espectroscopia de Ressonância Magnética , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Antígeno Nuclear de Célula em Proliferação/genética
9.
Nucleic Acids Res ; 45(5): 2600-2614, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-27994034

RESUMO

Ribonucleotides (rNs) incorporated in the genome by DNA polymerases (Pols) are removed by RNase H2. Cytidine and guanosine preferentially accumulate over the other rNs. Here we show that human Pol η can incorporate cytidine monophosphate (rCMP) opposite guanine, 8-oxo-7,8-dihydroguanine, 8-methyl-2΄-deoxyguanosine and a cisplatin intrastrand guanine crosslink (cis-PtGG), while it cannot bypass a 3-methylcytidine or an abasic site with rNs as substrates. Pol η is also capable of synthesizing polyribonucleotide chains, and its activity is enhanced by its auxiliary factor DNA Pol δ interacting protein 2 (PolDIP2). Human RNase H2 removes cytidine and guanosine less efficiently than the other rNs and incorporation of rCMP opposite DNA lesions further reduces the efficiency of RNase H2. Experiments with XP-V cell extracts indicate Pol η as the major basis of rCMP incorporation opposite cis-PtGG. These results suggest that translesion synthesis by Pol η can contribute to the accumulation of rCMP in the genome, particularly opposite modified guanines.


Assuntos
Dano ao DNA , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Ribonuclease H/metabolismo , Ribonucleotídeos/metabolismo , Linhagem Celular , Monofosfato de Citidina/metabolismo , DNA/biossíntese , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , RNA/biossíntese , Xeroderma Pigmentoso/genética
10.
Bioorg Med Chem Lett ; 28(21): 3454-3457, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30262428

RESUMO

The proto-oncogene c-Src is a non-receptor tyrosine kinase which is involved in the regulation of many cellular processes, such as differentiation, adhesion and survival. c-Src hyperactivation has been detected in many tumors, including neuroblastoma (NB), one of the major causes of death from neoplasia in infancy. We already reported a large family of pyrazolo[3,4-d]pyrimidines active as c-Src inhibitors. Interestingly, some of these derivatives resulted also active on SH-SY5Y NB cell line. Herein, starting from our previous Free Energy Perturbation/Monte Carlo calculations, we report an optimization study which led to the identification of a new series of derivatives endowed with nanomolar Ki values against c-Src, interesting antiproliferative activity on SH-SY5Y cells and a suitable ADME profile.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Quinases da Família src/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Proteína Tirosina Quinase CSK , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proto-Oncogene Mas , Pirazóis/síntese química , Pirazóis/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade
11.
Biochem J ; 474(10): 1559-1577, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446620

RESUMO

Infections by the human immunodeficiency virus type 1 (HIV-1), the causative agent of the acquired immunodeficiency syndrome (AIDS), are still totaling an appalling 36.7 millions worldwide, with 1.1 million AIDS deaths/year and a similar number of yearly new infections. All this, in spite of the discovery of HIV-1 as the AIDS etiological agent more than 30 years ago and the introduction of an effective combinatorial antiretroviral therapy (cART), able to control disease progression, more than 20 years ago. Although very effective, current cART is plagued by the emergence of drug-resistant viral variants and most of the efforts in the development of novel direct-acting antiviral agents (DAAs) against HIV-1 have been devoted toward the fighting of resistance. In this review, rather than providing a detailed listing of all the drugs and the corresponding resistance mutations, we aim, through relevant examples, at presenting to the general reader the conceptual shift in the approaches that are being taken to overcome the viral resistance hurdle. From the classic 'running faster' strategy, based on the development of novel DAAs active against the mutant viruses selected by the previous drugs and/or presenting to the virus a high genetic barrier toward the development of resilience, to a 'jumping higher' approach, which looks at the cell, rather than the virus, as a source of valuable drug targets, in order to make the cellular environment non-permissive toward the replication of both wild-type and mutated viruses.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Desenho de Fármacos , Farmacorresistência Viral Múltipla , Quimioterapia Combinada , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Modelos Biológicos , Animais , Fármacos Anti-HIV/efeitos adversos , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Terapia Antirretroviral de Alta Atividade/efeitos adversos , Antagonistas dos Receptores CCR5/química , Antagonistas dos Receptores CCR5/farmacologia , Antagonistas dos Receptores CCR5/uso terapêutico , RNA Helicases DEAD-box/antagonistas & inibidores , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Quimioterapia Combinada/efeitos adversos , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Inibidores da Protease de HIV/efeitos adversos , Inibidores da Protease de HIV/química , Inibidores da Protease de HIV/farmacologia , Inibidores da Protease de HIV/uso terapêutico , HIV-1/genética , HIV-1/crescimento & desenvolvimento , HIV-1/fisiologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Proteínas do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Proteínas do Vírus da Imunodeficiência Humana/química , Proteínas do Vírus da Imunodeficiência Humana/genética , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Humanos , Estrutura Molecular , Terapia de Alvo Molecular , Mutação , Conformação Proteica , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/farmacologia , Inibidores da Transcriptase Reversa/uso terapêutico , Fenômenos Fisiológicos Virais/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
12.
Biophys J ; 113(7): 1373-1382, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28978432

RESUMO

Ribonucleotide incorporation is the most common error occurring during DNA replication. Cells have hence developed mechanisms to remove ribonucleotides from the genome and restore its integrity. Indeed, the persistence of ribonucleotides into DNA leads to severe consequences, such as genome instability and replication stress. Thus, it becomes important to understand the effects of ribonucleotides incorporation, starting from their impact on DNA structure and conformation. Here we present a systematic study of the effects of ribonucleotide incorporation into DNA molecules. We have developed, to our knowledge, a new method to efficiently synthesize long DNA molecules (hundreds of basepairs) containing ribonucleotides, which is based on a modified protocol for the polymerase chain reaction. By means of atomic force microscopy, we could therefore investigate the changes, upon ribonucleotide incorporation, of the structural and conformational properties of numerous DNA populations at the single-molecule level. Specifically, we characterized the scaling of the contour length with the number of basepairs and the scaling of the end-to-end distance with the curvilinear distance, the bending angle distribution, and the persistence length. Our results revealed that ribonucleotides affect DNA structure and conformation on scales that go well beyond the typical dimension of the single ribonucleotide. In particular, the presence of ribonucleotides induces a systematic shortening of the molecules, together with a decrease of the persistence length. Such structural changes are also likely to occur in vivo, where they could directly affect the downstream DNA transactions, as well as interfere with protein binding and recognition.


Assuntos
DNA/metabolismo , Conformação de Ácido Nucleico , Ribonucleotídeos/metabolismo , DNA/química , Escherichia coli , Modelos Lineares , Microscopia de Força Atômica , Mutação , Reação em Cadeia da Polimerase , Ribonucleotídeos/química , Taq Polimerase/genética , Taq Polimerase/metabolismo
13.
Bioorg Med Chem Lett ; 26(15): 3436-40, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27374241

RESUMO

The major clinical challenge in drug-resistant chronic myelogenous leukemia (CML) is currently represented by the Bcr-Abl T315I mutant, which is unresponsive to treatment with common first and second generation ATP-competitive tyrosine kinase inhibitors (TKIs). Allosteric inhibition of Bcr-Abl represent a new frontier in the fight against resistant leukemia and few candidates have been identified in the last few years. Among these, myristate pocket (MP) binders discovered by Novartis (e.g. GNF2/5) showed promising results, although they proved to be active against the T315I mutant only in combination with first and second generation ATP-competitive inhibitors. Here we used a cascade screening approach based on sequential fluorescence polarization (FP) screening, in silico docking/dynamics studies and kinetic-enzymatic studies to identify novel MP binders. A pyrazolo[3,4-d]pyrimidine derivative (6) has been identified as a promising allosteric inhibitor active on 32D leukemia cell lines (expressing Bcr-Abl WT and T315I) with no need of combination with any ATP-competitive inhibitor.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Proteínas de Membrana/antagonistas & inibidores , Miristatos/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Proteínas de Membrana/genética , Modelos Moleculares , Estrutura Molecular , Mutação , Miristatos/síntese química , Miristatos/química , Proteínas de Neoplasias/genética , Relação Estrutura-Atividade
14.
Bioorg Med Chem ; 24(19): 4555-4562, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27527414

RESUMO

The tyrosine kinase Kit, a receptor for Stem Cell Factor, is involved, among others, in processes associated to cell survival, proliferation and migration. Upon physiological conditions, the activity of Kit is tightly regulated. However, primary mutations that lead to its constitutive activation are the causal oncogenic driver of gastrointestinal stromal tumours (GISTs). GISTs are known to be refractory to conventional therapies but the introduction of Imatinib, a selective inhibitor of tyrosine kinases Abl and Kit, significantly ameliorated the treatment options of GISTs patients. However, the acquisition of secondary mutations renders Kit resistant towards all available drugs. Mutation involving gatekeeper residues (such as V654a and T670I) influence both the structure and the catalytic activity of the enzyme. Therefore, detailed knowledge of the enzymatic properties of the mutant forms, in comparison with the wild type enzyme, is an important pre-requisite for the rational development of specific inhibitors. In this paper we report a thorough kinetic analysis of the reaction catalyzed by the Kit kinase and its gatekeeper mutated form T670I. Our results revealed the different mechanisms of action of these two enzymes and may open a new avenue for the future design of specific Kit inhibitors.


Assuntos
Mutação Puntual , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Trifosfato de Adenosina/metabolismo , Desenho de Fármacos , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/enzimologia , Tumores do Estroma Gastrointestinal/genética , Humanos , Cinética , Peptídeos/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Especificidade por Substrato
15.
Proc Natl Acad Sci U S A ; 110(47): 18850-5, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24191025

RESUMO

The bypass of DNA lesions by the replication fork requires a switch between the replicative DNA polymerase (Pol) and a more specialized translesion synthesis (TLS) Pol to overcome the obstacle. DNA Pol δ-interacting protein 2 (PolDIP2) has been found to physically interact with Pol η, Pol ζ, and Rev1, suggesting a possible role of PolDIP2 in the TLS reaction. However, the consequences of PolDIP2 interaction on the properties of TLS Pols remain unknown. Here, we analyzed the effects of PolDIP2 on normal and TLS by five different human specialized Pols from three families: Pol δ (family B), Pol η and Pol ι (family Y), and Pol λ and Pol ß (family X). Our results show that PolDIP2 also physically interacts with Pol λ, which is involved in the correct bypass of 8-oxo-7,8-dihydroguanine (8-oxo-G) lesions. This interaction increases both the processivity and catalytic efficiency of the error-free bypass of a 8-oxo-G lesion by both Pols η and λ, but not by Pols ß or ι. Additionally, we provide evidence that PolDIP2 stimulates Pol δ without affecting its fidelity, facilitating the switch from Pol δ to Pol λ during 8-oxo-G TLS. PolDIP2 stimulates Pols λ and η mediated bypass of other common DNA lesions, such as abasic sites and cyclobutane thymine dimers. Finally, PolDIP2 silencing increases cell sensitivity to oxidative stress and its effect is further potentiated in a Pol λ deficient background, suggesting that PolDIP2 is an important mediator for TLS.


Assuntos
Dano ao DNA/genética , DNA Polimerase beta/metabolismo , Replicação do DNA/fisiologia , Guanina/análogos & derivados , Proteínas Nucleares/metabolismo , Cromatografia por Troca Iônica , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli , Fluorescência , Guanina/metabolismo , Humanos , Imunoprecipitação , Cinética , Oligonucleotídeos/genética , RNA Interferente Pequeno/genética
16.
Plant Cell ; 23(2): 806-22, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21325140

RESUMO

The oxidized base 7,8-oxoguanine (8-oxo-G) is the most common DNA lesion generated by reactive oxygen species. This lesion is highly mutagenic due to the frequent misincorporation of A opposite 8-oxo-G during DNA replication. In mammalian cells, the DNA polymerase (pol) family X enzyme DNA pol λ catalyzes the correct incorporation of C opposite 8-oxo-G, together with the auxiliary factor proliferating cell nuclear antigen (PCNA). Here, we show that Arabidopsis thaliana DNA pol λ, the only member of the X family in plants, is as efficient in performing error-free translesion synthesis past 8-oxo-G as its mammalian homolog. Arabidopsis, in contrast with animal cells, possesses two genes for PCNA. Using in vitro and in vivo approaches, we observed that PCNA2, but not PCNA1, physically interacts with DNA pol λ, enhancing its fidelity and efficiency in translesion synthesis. The levels of DNA pol λ in transgenic plantlets characterized by overexpression or silencing of Arabidopsis POLL correlate with the ability of cell extracts to perform error-free translesion synthesis. The important role of DNA pol λ is corroborated by the observation that the promoter of POLL is activated by UV and that both overexpressing and silenced plants show altered growth phenotypes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Dano ao DNA , DNA Polimerase beta/metabolismo , Estresse Oxidativo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Arabidopsis/metabolismo , Clonagem Molecular , DNA de Plantas/metabolismo , Guanina/análogos & derivados , Guanina/química , Humanos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Protoplastos/metabolismo
17.
Nucleic Acids Res ; 40(12): 5577-90, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22373917

RESUMO

'Classical' non-homologous end joining (NHEJ), dependent on the Ku70/80 and the DNA ligase IV/XRCC4 complexes, is essential for the repair of DNA double-strand breaks. Eukaryotic cells possess also an alternative microhomology-mediated end-joining (MMEJ) mechanism, which is independent from Ku and DNA ligase 4/XRCC4. The components of the MMEJ machinery are still largely unknown. Family X DNA polymerases (pols) are involved in the classical NHEJ pathway. We have compared in this work, the ability of human family X DNA pols ß, λ and µ, to promote the MMEJ of different model templates with terminal microhomology regions. Our results reveal that DNA pol λ and DNA ligase I are sufficient to promote efficient MMEJ repair of broken DNA ends in vitro, and this in the absence of auxiliary factors. However, DNA pol ß, not λ, was more efficient in promoting MMEJ of DNA ends containing the (CAG)n triplet repeat sequence of the human Huntingtin gene, leading to triplet expansion. The checkpoint complex Rad9/Hus1/Rad1 promoted end joining by DNA pol λ on non-repetitive sequences, while it limited triplet expansion by DNA pol ß. We propose a possible novel role of DNA pol ß in MMEJ, promoting (CAG)n triplet repeats instability.


Assuntos
Reparo do DNA por Junção de Extremidades , DNA Polimerase beta/metabolismo , DNA/biossíntese , Domínio Catalítico , Proteínas de Ciclo Celular/metabolismo , DNA/química , DNA/metabolismo , DNA Polimerase beta/química , DNA de Cadeia Simples/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Proteína Huntingtina , Proteínas do Tecido Nervoso/genética , Fosfatos/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Sequências Repetitivas de Ácido Nucleico , Proteína de Replicação A/metabolismo , Homologia de Sequência do Ácido Nucleico , Moldes Genéticos , Expansão das Repetições de Trinucleotídeos , Repetições de Trinucleotídeos
18.
Antiviral Res ; 231: 106003, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39265657

RESUMO

Broad-spectrum antivirals can be extremely important for pandemic preparedness. Targeting host factors dispensable for the host but indispensable for the virus can result in high barrier to resistance and a large range of viruses targeted. PI4KB is a lipid kinase involved in the replication of several RNA viruses, but common inhibitors of this target are mainly active against members of the Picornaviridae family. Herein we describe the optimization of bithiazole PI4KB inhibitors as broad-spectrum antivirals (BSAs) active against different members of the Picornaviridae, Coronaviridae, Flaviviridae and Poxviridae families. Since some of these viruses are transmitted via respiratory route, the efficacy of one of the most promising compounds was evaluated in an airway model. The molecule showed complete viral inhibition and absence of toxicity. These results pave the road for the development of new BSAs.

19.
RSC Med Chem ; 15(5): 1589-1600, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38784463

RESUMO

Respiratory tract infections involving a variety of microorganisms such as viruses, bacteria, and fungi are a prominent cause of morbidity and mortality globally, exacerbating various pre-existing respiratory and non-respiratory conditions. Moreover, the ability of bacteria and viruses to coexist might impact the development and severity of lung infections, promoting bacterial colonization and subsequent disease exacerbation. Secondary bacterial infections following viral infections represent a complex challenge to be overcome from a therapeutic point of view. We report herein our efforts in the development of new bithiazole derivatives showing broad-spectrum antimicrobial activity against both viruses and bacteria. A series of 4-trifluoromethyl bithiazole analogues was synthesized and screened against selected viruses (hRVA16, EVD68, and ZIKV) and a panel of Gram-positive and Gram-negative bacteria. Among them, two promising broad-spectrum antimicrobial compounds (8a and 8j) have been identified: both compounds showed low micromolar activity against all tested viruses, 8a showed synergistic activity against E. coli and A. baumannii in the presence of a subinhibitory concentration of colistin, while 8j showed a broader spectrum of activity against Gram-positive and Gram-negative bacteria. Activity against antibiotic-resistant clinical isolates is also reported. Given the ever-increasing need to adequately address viral and bacterial infections or co-infections, this study paves the way for the development of new agents with broad antimicrobial properties and synergistic activity with common antivirals and antibacterials.

20.
EMBO Rep ; 13(1): 68-74, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22134548

RESUMO

Replicative DNA polymerases (DNA pols) increase their fidelity by removing misincorporated nucleotides with their 3' → 5' exonuclease activity. Exonuclease activity reduces translesion synthesis (TLS) efficiency and TLS DNA pols lack 3' → 5' exonuclease activity. Here we show that physiological concentrations of pyrophosphate (PP(i)) activate the pyrophosphorolytic activity by DNA pol-λ, allowing the preferential excision of the incorrectly incorporated A opposite a 7,8-dihydro-8-oxoguanine lesion, or T opposite a 6-methyl-guanine, with respect to the correct C. This is the first example of an alternative proofreading mechanism used during TLS.


Assuntos
DNA Polimerase beta/metabolismo , Quebras de DNA de Cadeia Simples , Reparo do DNA , Replicação do DNA/fisiologia , Nucleotídeos de Desoxiadenina/metabolismo , Difosfatos/metabolismo , Ativação Enzimática , Guanosina/análogos & derivados , Guanosina/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA