Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(26): 11718-11726, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38889109

RESUMO

Mountaintop removal coal mining is a source of downstream pollution. Here, we show that mountaintop removal coal mining also pollutes ecosystems downwind. We sampled regional snowpack near the end of winter along a transect of sites located 3-60 km downwind of coal mining in the Elk River valley of British Columbia, Canada. Vast quantities of polycyclic aromatic compounds (PACs), a toxic class of organic contaminants, are emitted and transported atmospherically far from emission sources. Summed PAC (ΣPAC) snowpack concentrations ranged from 29-94,866 ng/L. Snowpack ΣPAC loads, which account for variable snowpack depth, ranged from <10 µg/m2 at sites >50 km southeast of the mines to >1000 µg/m2 at sites in the Elk River valley near mining operations, with one site >15,000 µg/m2. Outside of the Elk River valley, snowpack ΣPAC loads exhibited a clear spatial pattern decreasing away from the mines. The compositional fingerprint of this PAC pollution matches closely with Elk River valley coal. Beyond our study region, modeling results suggest a depositional footprint extending across western Canada and the northwestern United States. These findings carry important implications for receiving ecosystems and for communities located close to mountaintop removal coal mines exposed to air pollution elevated in PACs.


Assuntos
Minas de Carvão , Neve , Colúmbia Britânica , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento Ambiental
2.
Environ Sci Technol ; 58(17): 7415-7424, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38578215

RESUMO

We found that a winter of abnormally low snowfall and numerous dust storms from eolian processes acting on exposed landscapes (including a major 4-day dust storm while onsite in May 2014) caused a cascade of impacts on the physical, chemical, and ecological functioning of the largest lake by volume in the High Arctic (Lake Hazen; Nunavut, Canada). MODIS imagery revealed that dust deposited in snowpacks on the lake's ice acted as light-absorbing impurities (LAIs), reducing surface reflectance and increasing surface temperatures relative to normal snowpack years, causing early snowmelt and drainage of meltwaters into the lake. LAIs remaining on the ice surface melted into the ice, causing premature candling and one of the earliest ice-offs and longest ice-free seasons on record for Lake Hazen. Meltwater inputs from snowpacks resulted in dilution of dissolved, and increased concentration of particulate bound, chemical species in Lake Hazen's upper water column. Spring inputs of nutrients increased both heterotrophy and algal productivity under the surface ice following snowmelt, with a net consumption of dissolved oxygen. As climate change continues to alter High Arctic temperatures and precipitation patterns, we can expect further changes in dust storm frequency and severity with corresponding impacts for freshwater ecosystems.


Assuntos
Poeira , Lagos , Estações do Ano , Regiões Árticas , Neve , Mudança Climática
3.
Artigo em Inglês | MEDLINE | ID: mdl-39046203

RESUMO

Perfluoroalkyl acids (PFAAs) are persistent compounds that are ubiquitous globally, though some uncertainties remain in the understanding of their long-range transport mechanisms. They are frequently detected in remote locations, where local sources may be unimportant. We collected a 16.5 metre ice core on northern Ellesmere Island, Nunavut, Canada to investigate PFAA deposition trends and transport mechanisms. The dated core represents fifty years of deposition (1967-2016), which accounts for the longest deposition record of perfluoroalkylcarboxylic acids (PFCAs) in the Arctic and the longest record of perfluoroalkylsulfonic acids (PFSAs) globally. PFCAs were detected frequently after the 1990s and have been increasing since. Homologue pair correlations, molar concentration ratios, and model comparisons suggest that PFCAs are primarily formed through oxidation of volatile precursors. PFSAs showed no discernible trend, with concentrations at least an order of magnitude lower than PFCAs. We observed episodic deposition of some PFAAs, notably perfluorooctane sulfonic acid (PFOS) and perfluorobutane sulfonic acid (PFBS) before the 1990s, which may be linked to Arctic military activities. Tracer analysis suggests that marine aerosols and mineral dust are relevant as transport vectors for selected PFAAs during specific time periods. These observations highlight the complex mechanisms responsible for the transport and deposition of PFAAs in the High Arctic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA