Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Lett Appl Microbiol ; 75(1): 17-23, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35285055

RESUMO

This study aimed to evaluate the filter paper as a means to transport inactivated Gram-negative non-fermentative (GNNF) bacteria and Haemophilus spp. for analysis using MALDI-TOF MS. A total of 133 isolates were evaluated and the analysis of each isolate was performed directly from original bacterial colony and in filter paper after the processing. To evaluate the agreement between the identification performed directly from the colony and after impregnation in filter paper, we assign the scores: >2·3 as excellent (E); 2·0 to 2·3 as very good (VG); 1·7-1·99 as good (G); <1·7 as unidentified (U). The divergences were classified as: Minor Divergence, Intermediate Divergence and Major Divergence. A total of 80 isolates transported in the filter paper disks presented full category concordance; 39 isolates presented Minor Divergence; 4 isolates present Intermediate Divergence; 4 isolates present Major Divergence and 6 isolates present better results after impregnation in filter paper. The proposed methodology of bacteria transportation presented a sensitivity of 96·9% and a specificity of 100%. The filter paper as a means to transport and storage of inactivated GNNF and Haemophilus spp. may be considered a potential tool for faster, more accurate, biosafe and less-expensive identification.


Assuntos
Bactérias Gram-Negativas , Haemophilus , Bactérias , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
2.
Braz J Microbiol ; 52(3): 1353-1356, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34213734

RESUMO

Infections caused by resistant microorganisms are a complex global public health challenge, and the way to combat the increase of resistance is the development of more modern and faster techniques for resistance detection. This study aimed to evaluate the transport of inactivated bacteria impregnated in a filter paper disk to detect carbapenem resistance genes by multiplex real-time PCR (qPCR) using high-resolution melting (HRM). A total of 88 isolates of 10 different species of Enterobacterales harboring well-characterized carbapenem resistance genes were evaluated. A full 10-µL loop of fresh growth of bacteria were impregnated in a filter paper disk, which was left at room temperature for 2 days in order to simulate the time spent in transportation. Bacterial inactivation was performed with 70% ethanol at 15 min. Afterwards, the DNA was extracted from the paper disks for further analysis by qPCR HRM. The time of 15 min in 70% ethanol was enough to inactivate all the isolates tested. It was possible to correctly identify the presence of the carbapenem resistance gene by HRM qPCR in 87 isolates (98.87%) that were transported in the filter paper disks. Our results indicated that it is possible to use filter paper to transport inactivated bacteria and to identify carbapenem resistance genes by qPCR HRM. This alternative tends to facilitate the access to this technology by many laboratories which do not have the qPCR equipment.


Assuntos
Bactérias , Carbapenêmicos , Farmacorresistência Bacteriana/genética , Bactérias/efeitos dos fármacos , Bactérias/genética , Carbapenêmicos/farmacologia , Etanol , Papel , Reação em Cadeia da Polimerase em Tempo Real , Manejo de Espécimes/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA