Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomech Eng ; 143(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34114605

RESUMO

Biomechanical testing of long bones can be susceptible to errors and uncertainty due to malalignment of specimens with respect to the mechanical axis of the test frame. To solve this problem, we designed a novel, customizable alignment and potting fixture for long bone testing. The fixture consists of three-dimensional-printed components modeled from specimen-specific computed tomography (CT) scans to achieve a predetermined specimen alignment. We demonstrated the functionality of this fixture by comparing benchtop torsional test results to specimen-matched finite element models and found a strong correlation (R2 = 0.95, p < 0.001). Additional computational models were used to estimate the impact of malalignment on mechanical behavior in both torsion and axial compression. Results confirmed that torsion testing is relatively robust to alignment artifacts, with absolute percent errors less than 8% in all malalignment scenarios. In contrast, axial testing was highly sensitive to setup errors, experiencing absolute percent errors up to 50% with off-center malalignment and up to 170% with angular malalignment. This suggests that whenever appropriate, torsion tests should be used preferentially as a summary mechanical measure. When more challenging modes of loading are required, pretest clinical-resolution CT scanning can be effectively used to create potting fixtures that allow for precise preplanned specimen alignment. This may be particularly important for more sensitive biomechanical tests (e.g., axial compressive tests) that may be needed for industrial applications, such as orthopedic implant design.


Assuntos
Rádio (Anatomia)
2.
BMC Musculoskelet Disord ; 22(1): 468, 2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34022860

RESUMO

BACKGROUND: Failure of surgical fixation in orthopaedic fractures occurs at a significantly higher rate in osteoporotic patients due to weakened osteoporotic bone. A therapy to acutely improve the mechanical properties of bone during fracture repair would have profound clinical impact. A previous study has demonstrated an increase in mechanical properties of acellular cortical canine bone after immersion in raloxifene. The goal of this study was to determine if similar treatment yields the same results in cancellous fetal bovine bone and whether this translates into a difference in screw pull-out strength in human cadaveric tissue. METHODS: Cancellous bone from fetal bovine distal femora underwent quasi-static four-point bending tests after being immersed in either raloxifene (20 µM) or phosphate-buffered saline as a control for 7 days (n = 10). Separately, 5 matched pairs of human osteoporotic cadaveric humeral heads underwent the same procedure. Five 3.5 mm unicortical cancellous screws were then inserted at standard surgical fixation locations to a depth of 30 mm and quasi-static screw pull-out tests were performed. RESULTS: In the four-point bending tests, there were no significant differences between the raloxifene and control groups for any of the mechanical properties - including stiffness (p = 0.333) and toughness (p = 0.546). In the screw pull-out tests, the raloxifene soaked samples and control samples had pullout strengths of 122 ± 74.3 N and 89.5 ± 63.8 N, respectively. CONCLUSIONS: Results from this study indicate that cancellous fetal bovine samples did not demonstrate an increase in toughness with raloxifene treatment, which is in contrast to previously published data that studied canine cortical bone. In vivo experiments are likely required to determine whether raloxifene will improve implant fixation.


Assuntos
Imersão , Cloridrato de Raloxifeno , Animais , Fenômenos Biomecânicos , Parafusos Ósseos , Cadáver , Bovinos , Cães , Humanos , Teste de Materiais , Cloridrato de Raloxifeno/farmacologia
3.
Foot Ankle Surg ; 27(4): 405-411, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32553424

RESUMO

BACKGROUND: This study compared stiffness between two constructs for talonavicular arthrodesis: a dorsomedial plating system and two partially threaded cannulated cancellous screws. We hypothesized that the plate would exhibit greater stiffness and resistance to deformation during cyclic loading. METHODS: The constructs were implanted in eight matched pairs of cadaveric feet and subjected to axial torsion, cantilever bending in two directions, and cyclic loading to failure. RESULTS: The two-screw constructs were significantly stiffer in plantar-dorsal bending (p = .025) and trended towards a higher number of cycles before failure than the plate group (p = .087). No significant differences were observed in internal torsion (p = .620), external torsion (p = .165), or medial-lateral bending (p = .686). CONCLUSIONS: This study provided the first biomechanical assessment of a plating system with an integrated compression screw, which was significantly less stiff than a two-screw construct when loaded from plantar to dorsal.


Assuntos
Artrodese/instrumentação , Artrodese/métodos , Placas Ósseas , Parafusos Ósseos , Pé/cirurgia , Adulto , Idoso , Fenômenos Biomecânicos , Cadáver , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pressão , Resultado do Tratamento
4.
Stapp Car Crash J ; 67: 44-77, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38662621

RESUMO

The goal of this study was to gather and compare kinematic response and injury data on both female and male whole-body Post-mortem Human Surrogates (PMHS) responses to Underbody Blast (UBB) loading. Midsized males (50th percentile, MM) have historically been most used in biomechanical testing and were the focus of the Warrior Injury Assessment Manikin (WIAMan) program, thus this population subgroup was selected to be the baseline for female comparison. Both small female (5th percentile, SF) and large female (75th percentile, LF) PMHS were included in the test series to attempt to discern whether differences between male and female responses were predominantly driven by sex or size. Eleven tests, using 20 whole-body PMHS, were conducted by the research team. Preparation of the rig and execution of the tests took place at the Aberdeen Proving Grounds (APG) in Aberdeen, MD. Two PMHS were used in each test. The Accelerative Loading Fixture (ALF) version 2, located at APG's Bear Point range was used for all male and female whole-body tests in this series. The ALF was an outdoor test rig that was driven by a buried explosive charge, to accelerate a platform holding two symmetrically mounted seats. The platform was designed as a large, rigid frame with a deformable center section that could be tuned to simulate the floor deformation of a vehicle during a UBB event. PMHS were restrained with a 5-point harness, common in military vehicle seats. Six-degree-of-freedom motion blocks were fixed to L3, the sacrum, and the left and right iliac wings. A three-degree-of freedom block was fixed to T12. Strain gages were placed on L4 and multiple locations on the pelvis. Accelerometers on the floor and seat of the ALF provided input data for each PMHS' feet and pelvis. Time histories and mean peak responses in z-axis acceleration were similar among the three PMHS groups in this body region. Injury outcomes were different and seemed to be influenced by both sex and size contributions. Small females incurred pelvis injuries in absence of lumbar injures. Midsized males had lumbar vertebral body fractures without pelvis injuries. And large females with injuries had both pelvis and lumbar VB fractures. This study provides evidence supporting the need for female biomechanical testing to generate female response and injury thresholds. Without the inclusion of female PMHS, the differences in the injury patterns between the small female and midsized male groups would not have been recognized. Standard scaling methods assume equivalent injury patterns between the experimental and scaled data. In this study, small female damage occurred in a different anatomical structure than for the midsized males. This is an important discovery for the development of anthropomorphic test devices, injury criteria, and injury mitigating technologies. The clear separation of small female damage results, in combination with seat speeds, suggest that the small female pelvis injury threshold in UBB events lies between 4 - 5 m/s seat speed. No inference can be made about the small female lumbar threshold, other than it is likely at higher speeds and/or over longer duration. Male lumbar spine damage occurred in both the higher- and lower lower-rate tests, indicating the injury threshold would be below the seat pulses tested in these experiments. Large females exhibited injury patterns that reflected both the small female and midsized male groups - with damaged PMHS having fractures in both pelvis and lumbar, and in both higher- and lower- rate tests. The difference in damage patterns between the sex and size groups should be considered in the development of injury mitigation strategies to protect across the full population.


Assuntos
Traumatismos por Explosões , Cadáver , Explosões , Vértebras Lombares , Humanos , Masculino , Feminino , Traumatismos por Explosões/fisiopatologia , Fenômenos Biomecânicos , Vértebras Lombares/lesões , Pessoa de Meia-Idade , Adulto , Pelve/lesões , Idoso , Manequins , Fatores Sexuais
5.
J Surg Educ ; 80(7): 1020-1027, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37198080

RESUMO

OBJECTIVE: To determine if preoperative examination of patient additive manufactured (AM) fracture models can be used to improve resident operative competency and patient outcomes. DESIGN: Prospective cohort study. Seventeen matched pairs of fracture fixation surgeries (for a total of 34 surgeries) were performed. Residents first performed a set of baseline surgeries (n = 17) without AM fracture models. The residents then performed a second set of surgeries randomly assigned to include an AM model (n = 11) or to omit it (n = 6). Following each surgery, the attending surgeon evaluated the resident using an Ottawa Surgical Competency Operating Room Evaluation (O-Score). The authors also recorded clinical outcomes including operative time, blood loss, fluoroscopy duration, and patient reported outcome measurement information system (PROMIS) scores of pain and function at 6 months. SETTING: Single-center academic level one trauma center. PARTICIPANTS: Twelve orthopaedic residents, between postgraduate year (PGY) 2 and 5, participated in this study. RESULTS: Residents significantly improved their O-Scores between the first and second surgery when they trained with AM models for the second surgery (p = 0.004, 2.43 ± 0.79 versus 3.73 ± 0.64). Similar improvements were not observed in the control group (p = 0.916, 2.69 ± 0.69 versus 2.77 ± 0.36). AM model training also significantly improved clinical outcomes, including surgery time (p = 0.006), fluoroscopy exposure time (p = 0.002), and patient reported functional outcomes (p = 0.0006). CONCLUSIONS: Conclusions: Training with AM fracture models improves the performance of orthopaedic surgery residents during fracture surgery.


Assuntos
Fraturas Ósseas , Internato e Residência , Impressão Tridimensional , Humanos , Competência Clínica , Educação de Pós-Graduação em Medicina , Fixação de Fratura/educação , Fraturas Ósseas/diagnóstico por imagem , Fraturas Ósseas/cirurgia , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA